scholarly journals Evaluating the solid electrolyte interphase formed on silicon electrodes: a comparison of ex situ X-ray photoelectron spectroscopy and in situ neutron reflectometry

2016 ◽  
Vol 18 (20) ◽  
pp. 13927-13940 ◽  
Author(s):  
T. M. Fears ◽  
M. Doucet ◽  
J. F. Browning ◽  
J. K. S. Baldwin ◽  
J. G. Winiarz ◽  
...  

This work details the in situ characterization of the interface between a silicon electrode and an electrolyte using a linear fluorinated solvent molecule.

1999 ◽  
Vol 14 (2) ◽  
pp. 436-441 ◽  
Author(s):  
S. Logothetidis ◽  
E. I. Meletis ◽  
G. Kourouklis

In situ and ex situ spectroscopic ellipsometry (SE), Raman spectroscopy (RS), x-ray photoelectron spectroscopy (XPS), and Auger electron spectroscopy (AES) have been used to study the stoichiometry and characterize TiNx thin films deposited by magnetron sputtering at various stoichiometries. In situ SE can provide parameters, such as the plasma energy, that can be utilized for monitoring of the film stoichiometry. Besides plasma energy, optical phonon position in RS was also found to be a sensitive probe of TiNx stoichiometry as detected by RS, XPS, and ex situ SE. Under these conditions, AES faces difficulties for reliable film characterization, and the complementary use of other techniques is required for determining the exact film stoichiometry.


2017 ◽  
Vol 5 (36) ◽  
pp. 19364-19370 ◽  
Author(s):  
Lingpiao Lin ◽  
Kai Yang ◽  
Rui Tan ◽  
Maofan Li ◽  
Shaojie Fu ◽  
...  

In situ AFM reveals the evolution of SEI during initial cycles under the effect of additive.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 202
Author(s):  
Miranda Martinez ◽  
Anil R. Chourasia

The Ti/SnO2 interface has been investigated in situ via the technique of x-ray photoelectron spectroscopy. Thin films (in the range from 0.3 to 1.1 nm) of titanium were deposited on SnO2 substrates via the e-beam technique. The deposition was carried out at two different substrate temperatures, namely room temperature and 200 °C. The photoelectron spectra of tin and titanium in the samples were found to exhibit significant differences upon comparison with the corresponding elemental and the oxide spectra. These changes result from chemical interaction between SnO2 and the titanium overlayer at the interface. The SnO2 was observed to be reduced to elemental tin while the titanium overlayer was observed to become oxidized. Complete reduction of SnO2 to elemental tin did not occur even for the lowest thickness of the titanium overlayer. The interfaces in both the types of the samples were observed to consist of elemental Sn, SnO2, elemental titanium, TiO2, and Ti-suboxide. The relative percentages of the constituents at the interface have been estimated by curve fitting the spectral data with the corresponding elemental and the oxide spectra. In the 200 °C samples, thermal diffusion of the titanium overlayer was observed. This resulted in the complete oxidation of the titanium overlayer to TiO2 upto a thickness of 0.9 nm of the overlayer. Elemental titanium resulting from the unreacted overlayer was observed to be more in the room temperature samples. The room temperature samples showed variation around 20% for the Ti-suboxide while an increasing trend was observed in the 200 °C samples.


Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1096
Author(s):  
Ligang Luo ◽  
Xiao Han ◽  
Qin Zeng

A series of Ni-Fe/SBA-15 catalysts was prepared and tested for the catalytic hydrogenation of levulinic acid to γ-valerolactone, adopting methanol as the only hydrogen donor, and investigating the synergism between Fe and Ni, both supported on SBA-15, towards this reaction. The characterization of the synthesized catalysts was carried out by XRD (X-ray powder diffraction), TEM (transmission electron microscopy), H2-TPD (hydrogen temperature-programmed desorption), XPS (X-ray photoelectron spectroscopy), and in situ FT-IR (Fourier transform–infrared spectroscopy) techniques. H2-TPD and XPS results have shown that electron transfer occurs from Fe to Ni, which is helpful both for the activation of the C=O bond and for the dissociative activation of H2 molecules, also in agreement with the results of the in situ FT-IR spectroscopy. The effect of temperature and reaction time on γ-valerolactone production was also investigated, identifying the best reaction conditions at 200 °C and 180 min, allowing for the complete conversion of levulinic acid and the complete selectivity to γ-valerolactone. Moreover, methanol was identified as an efficient hydrogen donor, if used in combination with the Ni-Fe/SBA-15 catalyst. The obtained results are promising, especially if compared with those obtained with the traditional and more expensive molecular hydrogen and noble-based catalysts.


2019 ◽  
Vol 21 (31) ◽  
pp. 17356-17365 ◽  
Author(s):  
Katie L. Browning ◽  
James F. Browning ◽  
Mathieu Doucet ◽  
Norifumi L. Yamada ◽  
Gao Liu ◽  
...  

With the use of in situ neutron reflectometry (NR) we show how the addition of an electronically conductive polymeric binder, PEFM, mediates the solid–electrolyte interphase (SEI) formation and composition on an amorphous Si (a-Si) electrode as a function of the state-of-charge.


Sign in / Sign up

Export Citation Format

Share Document