scholarly journals Intrinsic stability of magnetic anti-skyrmions in the tetragonal inverse Heusler compound Mn1.4Pt0.9Pd0.1Sn

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Rana Saha ◽  
Abhay K. Srivastava ◽  
Tianping Ma ◽  
Jagannath Jena ◽  
Peter Werner ◽  
...  

AbstractMagnetic anti-skyrmions are one of several chiral spin textures that are of great current interest both for their topological characteristics and potential spintronic applications. Anti-skyrmions were recently observed in the inverse tetragonal Heusler material Mn1.4Pt0.9Pd0.1Sn. Here we show, using Lorentz transmission electron microscopy, that anti-skyrmions are found over a wide range of temperature and magnetic fields in wedged lamellae formed from single crystals of Mn1.4Pt0.9Pd0.1Sn for thicknesses ranging up to ~250 nm. The temperature-field stability window of the anti-skyrmions varies little with thickness. Using micromagnetic simulations we show that this intrinsic stability of anti-skyrmions can be accounted for by the symmetry of the crystal lattice which is imposed on that of the Dzyaloshinskii-Moriya exchange interaction. These distinctive behaviors of anti-skyrmions makes them particularly attractive for spintronic applications.

2020 ◽  
Vol 6 (49) ◽  
pp. eabc0723
Author(s):  
Jagannath Jena ◽  
Börge Göbel ◽  
Vivek Kumar ◽  
Ingrid Mertig ◽  
Claudia Felser ◽  
...  

Chiral spin textures are of considerable interest for applications in spintronics. It has recently been shown that magnetic materials with D2d symmetry can sustain several distinct spin textures. Here, we show, using Lorentz transmission electron microscopy, that single and double chains of antiskyrmions can be generated at room temperature in nanostripes less than 0.5 μm in width formed from the D2d Heusler compound Mn1.4Pt0.9Pd0.1Sn. Typically, truncated helical spin textures are formed in low magnetic fields, whose edges are terminated by half antiskyrmions. These evolve into chains of antiskyrmions with increasing magnetic field. Single chains of these objects are located in the middle of the nanostripes even when the stripes are much wider than the antiskyrmions. Moreover, the chains can even include elliptical Bloch skyrmions depending on details of the applied magnetic field history. These findings make D2d materials special and highly interesting for applications such as magnetic racetrack memory storage devices.


2009 ◽  
Vol 15 (S2) ◽  
pp. 134-135 ◽  
Author(s):  
C Phatak ◽  
E Humphrey ◽  
M DeGraef ◽  
A Petford-Long

Extended abstract of a paper presented at Microscopy and Microanalysis 2009 in Richmond, Virginia, USA, July 26 – July 30, 2009


2019 ◽  
Vol 28 (8) ◽  
pp. 087503 ◽  
Author(s):  
Jin Tang ◽  
Lingyao Kong ◽  
Weiwei Wang ◽  
Haifeng Du ◽  
Mingliang Tian

2016 ◽  
Vol 22 (6) ◽  
pp. 1350-1359 ◽  
Author(s):  
Xiang Li Zhong ◽  
Sibylle Schilling ◽  
Nestor J. Zaluzec ◽  
M. Grace Burke

AbstractIn recent years, an increasing number of studies utilizing in situ liquid and/or gaseous cell scanning/transmission electron microscopy (S/TEM) have been reported. Because of the difficulty in the preparation of suitable specimens, these environmental S/TEM studies have been generally limited to studies of nanoscale structured materials such as nanoparticles, nanowires, or sputtered thin films. In this paper, we present two methodologies which have been developed to facilitate the preparation of electron-transparent samples from conventional bulk metals and alloys for in situ liquid/gaseous cell S/TEM experiments. These methods take advantage of combining sequential electrochemical jet polishing followed by focused ion beam extraction techniques to create large electron-transparent areas for site-specific observation. As an example, we illustrate the application of this methodology for the preparation of in situ specimens from a cold-rolled Type 304 austenitic stainless steel sample, which was subsequently examined in both 1 atm of air as well as fully immersed in a H2O environment in the S/TEM followed by hyperspectral imaging. These preparation techniques can be successfully applied as a general procedure for a wide range of metals and alloys, and are suitable for a variety of in situ analytical S/TEM studies in both aqueous and gaseous environments.


Sign in / Sign up

Export Citation Format

Share Document