scholarly journals Modulating mechanical stability of heterodimerization between engineered orthogonal helical domains

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Miao Yu ◽  
Zhihai Zhao ◽  
Zibo Chen ◽  
Shimin Le ◽  
Jie Yan

Abstract Mechanically stable specific heterodimerization between small protein domains have a wide scope of applications, from using as a molecular anchorage in single-molecule force spectroscopy studies of protein mechanics, to serving as force-bearing protein linker for modulation of mechanotransduction of cells, and potentially acting as a molecular crosslinker for functional materials. Here, we explore the possibility to develop heterodimerization system with a range of mechanical stability from a set of recently engineered helix-heterotetramers whose mechanical properties have yet to be characterized. We demonstrate this possibility using two randomly chosen helix-heterotetramers, showing that their mechanical properties can be modulated by changing the stretching geometry and the number of interacting helices. These helix-heterotetramers and their derivatives are sufficiently stable over physiological temperature range. Using it as mechanically stable anchorage, we demonstrate the applications in single-molecule manipulation studies of the temperature dependent unfolding and refolding of a titin immunoglobulin domain and α-actinin spectrin repeats.

2018 ◽  
Vol 6 (32) ◽  
pp. 5303-5312 ◽  
Author(s):  
Lichao Liu ◽  
Han Wang ◽  
Yueying Han ◽  
Shanshan Lv ◽  
Jianfeng Chen

Mechanical stability of Ca2+-responsive β-roll peptides (RTX) is largely responsible for the Ca2+-dependent mechanical properties of the RTX-based hydrogels.


2014 ◽  
Vol 136 (2) ◽  
pp. 688-697 ◽  
Author(s):  
Stefanie Krysiak ◽  
Susanne Liese ◽  
Roland R. Netz ◽  
Thorsten Hugel

2020 ◽  
Vol 6 (13) ◽  
pp. eaay5999 ◽  
Author(s):  
Steffen M. Sedlak ◽  
Leonard C. Schendel ◽  
Hermann E. Gaub ◽  
Rafael C. Bernardi

Macromolecules tend to respond to applied forces in many different ways. Chemistry at high shear forces can be intriguing, with relatively soft bonds becoming very stiff in specific force-loading geometries. Largely used in bionanotechnology, an important case is the streptavidin (SA)/biotin interaction. Although SA’s four subunits have the same affinity, we find that the forces required to break the SA/biotin bond depend strongly on the attachment geometry. With AFM-based single-molecule force spectroscopy (SMFS), we measured unbinding forces of biotin from different SA subunits to range from 100 to more than 400 pN. Using a wide-sampling approach, we carried out hundreds of all-atom steered molecular dynamics (SMD) simulations for the entire system, including molecular linkers. Our strategy revealed the molecular mechanism that causes a fourfold difference in mechanical stability: Certain force-loading geometries induce conformational changes in SA’s binding pocket lowering the energy barrier, which biotin has to overcome to escape the pocket.


2010 ◽  
Vol 39 (8) ◽  
pp. 1219-1227 ◽  
Author(s):  
Krishna Sarangapani ◽  
Hamdi Torun ◽  
Ofer Finkler ◽  
Cheng Zhu ◽  
Levent Degertekin

Nanoscale ◽  
2019 ◽  
Vol 11 (42) ◽  
pp. 19791-19796 ◽  
Author(s):  
Jiahao Xia ◽  
Jiacheng Zuo ◽  
Hongbin Li

The binding of Co(iii) to the bi-histidine metal chelation site significantly enhances protein's mechanical stability.


2013 ◽  
Vol 104 (2) ◽  
pp. 167a ◽  
Author(s):  
Hema Chandra Kotamarthi ◽  
Riddhi Sharma ◽  
Sri Rama Koti Ainavarapu

Science ◽  
2018 ◽  
Vol 359 (6383) ◽  
pp. 1527-1533 ◽  
Author(s):  
Lukas F. Milles ◽  
Klaus Schulten ◽  
Hermann E. Gaub ◽  
Rafael C. Bernardi

High resilience to mechanical stress is key when pathogens adhere to their target and initiate infection. Using atomic force microscopy–based single-molecule force spectroscopy, we explored the mechanical stability of the prototypical staphylococcal adhesin SdrG, which targets a short peptide from human fibrinogen β. Steered molecular dynamics simulations revealed, and single-molecule force spectroscopy experiments confirmed, the mechanism by which this complex withstands forces of over 2 nanonewtons, a regime previously associated with the strength of a covalent bond. The target peptide, confined in a screwlike manner in the binding pocket of SdrG, distributes forces mainly toward the peptide backbone through an intricate hydrogen bond network. Thus, these adhesins can attach to their target with exceptionally resilient mechanostability, virtually independent of peptide side chains.


Sign in / Sign up

Export Citation Format

Share Document