scholarly journals Chemical shift prediction of RNA imino groups: application toward characterizing RNA excited states

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yanjiao Wang ◽  
Ge Han ◽  
Xiuying Jiang ◽  
Tairan Yuwen ◽  
Yi Xue

AbstractNH groups in proteins or nucleic acids are the most challenging target for chemical shift prediction. Here we show that the RNA base pair triplet motif dictates imino chemical shifts in its central base pair. A lookup table is established that links each type of base pair triplet to experimental chemical shifts of the central base pair, and can be used to predict imino chemical shifts of RNAs to remarkable accuracy. Strikingly, the semiempirical method can well interpret the variations of chemical shifts for different base pair triplets, and is even applicable to non-canonical motifs. This finding opens an avenue for predicting chemical shifts of more complicated RNA motifs. Furthermore, we combine the imino chemical shift prediction with NMR relaxation dispersion experiments targeting both 15N and 1HN of the imino group, and verify a previously characterized excited state of P5abc subdomain including an earlier speculated non-native G•G mismatch.

2016 ◽  
Author(s):  
Lars A. Bratholm ◽  
Jan H. Jensen

The accurate prediction of protein chemical shifts using quantum mechanics (QM)-based method has been the subject of intense research for more than 20 years but so far empirical methods for chemical shift prediction have proven more accurate. In this paper we show that a QM-based predictor of protein backbone and CB chemical shifts (ProCS15, PeerJ 2016, 3:e1344) is of comparable accuracy to empirical chemical shift predictors after chemical shift-based structural refinement that removes small structural errors. We present a method by which quantum chemistry based predictions of isotropic chemical shielding values (ProCS15) can be used to refine protein structures using Markov Chain Monte Carlo (MCMC) simulations, relating the chemical shielding values to the experimental chemical shifts probabilistically. Two kinds of MCMC structural refinement simulations were performed using force field geometry optimized X-ray structures as starting points: Simulated annealing of the starting structure and constant temperature MCMC simulation followed by simulated annealing of a representative ensemble structure. Annealing of the CHARMM structure changes the CA-RMSD by an average of 0.4 Å but lowers the chemical shift RMSD by 1.0 and 0.7 ppm for CA and N. Conformational averaging has a relatively small effect (0.1 - 0.2 ppm) on the overall agreement with carbon chemical shifts but lowers the error for nitrogen chemical shifts by 0.4 ppm. If a residue-specific offset is included the ProCS15 predicted chemical shifts have RMSD values relative to experiment that are comparable to popular empirical chemical shift predictors. The annealed representative ensemble structures differs in CA-RMSD relative to the initial structures by an average of 2.0 Å, with >2.0 Å difference for six proteins. In four of the cases, the largest structural differences arise in structurally flexible regions of the protein as determined by NMR, and in the remaining two cases, the large structural change may be due to force field deficiencies. The overall accuracy of the empirical methods are slightly improved by annealing the CHARMM structure with ProCS15, which may suggest that the minor structural changes introduced by ProCS15-based annealing improves the accuracy of the protein structures. Having established that QM-based chemical shift prediction can deliver the same accuracy as empirical shift predictors we hope this can help increase the accuracy of related approaches such as QM/MM or linear scaling approaches or interpreting protein structural dynamics from QM-derived chemical shift.


2016 ◽  
Author(s):  
Lars A. Bratholm ◽  
Jan H. Jensen

The accurate prediction of protein chemical shifts using quantum mechanics (QM)-based method has been the subject of intense research for more than 20 years but so far empirical methods for chemical shift prediction have proven more accurate. In this paper we show that a QM-based predictor of protein backbone and CB chemical shifts (ProCS15, PeerJ 2016, 3:e1344) is of comparable accuracy to empirical chemical shift predictors after chemical shift-based structural refinement that removes small structural errors. We present a method by which quantum chemistry based predictions of isotropic chemical shielding values (ProCS15) can be used to refine protein structures using Markov Chain Monte Carlo (MCMC) simulations, relating the chemical shielding values to the experimental chemical shifts probabilistically. Two kinds of MCMC structural refinement simulations were performed using force field geometry optimized X-ray structures as starting points: Simulated annealing of the starting structure and constant temperature MCMC simulation followed by simulated annealing of a representative ensemble structure. Annealing of the CHARMM structure changes the CA-RMSD by an average of 0.4 Å but lowers the chemical shift RMSD by 1.0 and 0.7 ppm for CA and N. Conformational averaging has a relatively small effect (0.1 - 0.2 ppm) on the overall agreement with carbon chemical shifts but lowers the error for nitrogen chemical shifts by 0.4 ppm. If a residue-specific offset is included the ProCS15 predicted chemical shifts have RMSD values relative to experiment that are comparable to popular empirical chemical shift predictors. The annealed representative ensemble structures differs in CA-RMSD relative to the initial structures by an average of 2.0 Å, with >2.0 Å difference for six proteins. In four of the cases, the largest structural differences arise in structurally flexible regions of the protein as determined by NMR, and in the remaining two cases, the large structural change may be due to force field deficiencies. The overall accuracy of the empirical methods are slightly improved by annealing the CHARMM structure with ProCS15, which may suggest that the minor structural changes introduced by ProCS15-based annealing improves the accuracy of the protein structures. Having established that QM-based chemical shift prediction can deliver the same accuracy as empirical shift predictors we hope this can help increase the accuracy of related approaches such as QM/MM or linear scaling approaches or interpreting protein structural dynamics from QM-derived chemical shift.


2020 ◽  
Vol 74 (12) ◽  
pp. 753-766
Author(s):  
Jan H. Overbeck ◽  
Werner Kremer ◽  
Remco Sprangers

Abstract Proteins and nucleic acids are highly dynamic bio-molecules that can populate a variety of conformational states. NMR relaxation dispersion (RD) methods are uniquely suited to quantify the associated kinetic and thermodynamic parameters. Here, we present a consistent suite of 19F-based CPMG, on-resonance R1ρ and off-resonance R1ρ RD experiments. We validate these experiments by studying the unfolding transition of a 7.5 kDa cold shock protein. Furthermore we show that the 19F RD experiments are applicable to very large molecular machines by quantifying dynamics in the 360 kDa half-proteasome. Our approach significantly extends the timescale of chemical exchange that can be studied with 19F RD, adds robustness to the extraction of exchange parameters and can determine the absolute chemical shifts of excited states. Importantly, due to the simplicity of 19F NMR spectra, it is possible to record complete datasets within hours on samples that are of very low costs. This makes the presented experiments ideally suited to complement static structural information from cryo-EM and X-ray crystallography with insights into functionally relevant motions. Graphic abstract


2019 ◽  
Vol 21 (27) ◽  
pp. 14992-15000 ◽  
Author(s):  
Martin Dračínský ◽  
Pablo Unzueta ◽  
Gregory J. O. Beran

A simple molecular correction improves significantly the accuracy of predictions of solid-state NMR chemical shifts.


Author(s):  
R. Bryn Fenwick ◽  
David Oyen ◽  
Henry van den Bedem ◽  
H. Jane Dyson ◽  
Peter E. Wright

Author(s):  
Bei Liu ◽  
Honglue Shi ◽  
Atul Rangadurai ◽  
Felix Nussbaumer ◽  
Chia-Chieh Chu ◽  
...  

ABSTRACTN6-methyladenosine (m6A) is a post-transcriptional modification that controls gene expression by recruiting proteins to RNA sites. The modification also slows biochemical processes through mechanisms that are not understood. Using NMR relaxation dispersion, we show that m6A pairs with uridine with the methylamino group in the anti conformation to form a Watson-Crick base pair that transiently exchanges on the millisecond timescale with a singly hydrogen-bonded low-populated (1%) mismatch-like conformation in which the methylamino group is syn. This ability to rapidly interchange between Watson-Crick or mismatch-like forms, combined with different syn:anti isomer preferences when paired (~1:100) versus unpaired (~10:1), explains how m6A robustly slows duplex annealing without affecting melting via two pathways in which isomerization occurs before or after duplex annealing. Our model quantitatively predicts how m6A reshapes the kinetic landscape of nucleic acid hybridization and conformational transitions, and provides an explanation for why the modification robustly slows diverse cellular processes.


1997 ◽  
Vol 119 (6) ◽  
pp. 1336-1345 ◽  
Author(s):  
Gyula Batta ◽  
Katalin E. Kövér ◽  
Jacquelyn Gervay ◽  
Miklós Hornyák ◽  
Gareth M. Roberts

Sign in / Sign up

Export Citation Format

Share Document