scholarly journals Highly selective and robust single-atom catalyst Ru1/NC for reductive amination of aldehydes/ketones

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Haifeng Qi ◽  
Ji Yang ◽  
Fei Liu ◽  
LeiLei Zhang ◽  
Jingyi Yang ◽  
...  

AbstractSingle-atom catalysts (SACs) have emerged as a frontier in heterogeneous catalysis due to the well-defined active site structure and the maximized metal atom utilization. Nevertheless, the robustness of SACs remains a critical concern for practical applications. Herein, we report a highly active, selective and robust Ru SAC which was synthesized by pyrolysis of ruthenium acetylacetonate and N/C precursors at 900 °C in N2 followed by treatment at 800 °C in NH3. The resultant Ru1-N3 structure exhibits moderate capability for hydrogen activation even in excess NH3, which enables the effective modulation between transimination and hydrogenation activity in the reductive amination of aldehydes/ketones towards primary amines. As a consequence, it shows superior amine productivity, unrivalled resistance against CO and sulfur, and unexpectedly high stability under harsh hydrotreating conditions compared to most SACs and nanocatalysts. This SAC strategy will open an avenue towards the rational design of highly selective and robust catalysts for other demanding transformations.

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Zhaoyuan Lyu ◽  
Shichao Ding ◽  
Maoyu Wang ◽  
Xiaoqing Pan ◽  
Zhenxing Feng ◽  
...  

AbstractFe-based single-atomic site catalysts (SASCs), with the natural metalloproteases-like active site structure, have attracted widespread attention in biocatalysis and biosensing. Precisely, controlling the isolated single-atom Fe-N-C active site structure is crucial to improve the SASCs’ performance. In this work, we use a facile ion-imprinting method (IIM) to synthesize isolated Fe-N-C single-atomic site catalysts (IIM-Fe-SASC). With this method, the ion-imprinting process can precisely control ion at the atomic level and form numerous well-defined single-atomic Fe-N-C sites. The IIM-Fe-SASC shows better peroxidase-like activities than that of non-imprinted references. Due to its excellent properties, IIM-Fe-SASC is an ideal nanoprobe used in the colorimetric biosensing of hydrogen peroxide (H2O2). Using IIM-Fe-SASC as the nanoprobe, in situ detection of H2O2 generated from MDA-MB-231 cells has been successfully demonstrated with satisfactory sensitivity and specificity. This work opens a novel and easy route in designing advanced SASC and provides a sensitive tool for intracellular H2O2 detection.


2016 ◽  
Vol 7 (9) ◽  
pp. 6251-6262 ◽  
Author(s):  
Xiongwei Dong ◽  
Zhe Zhang ◽  
Jidong Zhao ◽  
Juan Lei ◽  
Yuanyuan Chen ◽  
...  

Based on the active site structure and catalytic mechanism of SOD1, we developed a new type of efficient and specific SOD1 inhibitor which can directly change the intracellular levels of H2O2 and O2˙−.


2018 ◽  
Vol 9 (27) ◽  
pp. 5890-5896 ◽  
Author(s):  
Yingxin Feng ◽  
Linsen Zhou ◽  
Qiang Wan ◽  
Sen Lin ◽  
Hua Guo

The active-site structure, reaction mechanism, and product selectivity of the industrially important selective hydrogenation of 1,3-butadiene are investigated using first principles for an emerging single-atom Pd catalyst anchored on graphene.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Yingjie Yang ◽  
Yanhui Yu ◽  
Jing Li ◽  
Qingrong Chen ◽  
Yanlian Du ◽  
...  

AbstractThe investigation of highly effective, durable, and cost-effective electrocatalysts for the hydrogen evolution reaction (HER) is a prerequisite for the upcoming hydrogen energy society. To establish a new hydrogen energy system and gradually replace the traditional fossil-based energy, electrochemical water-splitting is considered the most promising, environmentally friendly, and efficient way to produce pure hydrogen. Compared with the commonly used platinum (Pt)-based catalysts, ruthenium (Ru) is expected to be a good alternative because of its similar hydrogen bonding energy, lower water decomposition barrier, and considerably lower price. Analyzing and revealing the HER mechanisms, as well as identifying a rational design of Ru-based HER catalysts with desirable activity and stability is indispensable. In this review, the research progress on HER electrocatalysts and the relevant describing parameters for HER performance are briefly introduced. Moreover, four major strategies to improve the performance of Ru-based electrocatalysts, including electronic effect modulation, support engineering, structure design, and maximum utilization (single atom) are discussed. Finally, the challenges, solutions and prospects are highlighted to prompt the practical applications of Ru-based electrocatalysts for HER.


2006 ◽  
Vol 445 (2) ◽  
pp. 199-213 ◽  
Author(s):  
Paul G. Furtmüller ◽  
Martina Zederbauer ◽  
Walter Jantschko ◽  
Jutta Helm ◽  
Martin Bogner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document