scholarly journals Nanoscale architecture of a VAP-A-OSBP tethering complex at membrane contact sites

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Eugenio de la Mora ◽  
Manuela Dezi ◽  
Aurélie Di Cicco ◽  
Joëlle Bigay ◽  
Romain Gautier ◽  
...  

AbstractMembrane contact sites (MCS) are subcellular regions where two organelles appose their membranes to exchange small molecules, including lipids. Structural information on how proteins form MCS is scarce. We designed an in vitro MCS with two membranes and a pair of tethering proteins suitable for cryo-tomography analysis. It includes VAP-A, an ER transmembrane protein interacting with a myriad of cytosolic proteins, and oxysterol-binding protein (OSBP), a lipid transfer protein that transports cholesterol from the ER to the trans Golgi network. We show that VAP-A is a highly flexible protein, allowing formation of MCS of variable intermembrane distance. The tethering part of OSBP contains a central, dimeric, and helical T-shape region. We propose that the molecular flexibility of VAP-A enables the recruitment of partners of different sizes within MCS of adjustable thickness, whereas the T geometry of the OSBP dimer facilitates the movement of the two lipid-transfer domains between membranes.

2020 ◽  
Author(s):  
Eugenio de la Mora ◽  
Manuela Dezi ◽  
Aurélie Di Cicco ◽  
Joëlle Bigay ◽  
Romain Gautier ◽  
...  

SummaryMembrane contact sites (MCS) are subcellular regions where two organelles appose their membranes to exchange small molecules, including lipids. Structural information on how proteins form MCS is scarce. We designed an in vitro MCS with two membranes and a pair of tethering proteins suitable for cryo-tomography analysis. It includes VAP-A, an ER transmembrane protein interacting with a myriad of cytosolic proteins, and oxysterol-binding protein (OSBP), a lipid transfer protein that transports cholesterol from the ER to the trans Golgi network. We show that VAP-A is a highly flexible protein, allowing formation of MCS of variable intermembrane distance. The tethering part of OSBP contains a central, dimeric, and helical T-shape region. We propose that the molecular flexibility of VAP-A enables the recruitment of partners of different sizes within MCS of adjustable thickness, whereas the T geometry of the OSBP dimer facilitates the movement of the two lipid-transfer domains between membranes.


2019 ◽  
Author(s):  
RS D’Souza ◽  
JY Lim ◽  
A Turgut ◽  
K Servage ◽  
J Zhang ◽  
...  

AbstractCoordinated assembly and disassembly of integrin-mediated focal adhesions (FAs) is essential for cell migration. Many studies have shown that FA disassembly requires Ca2+ influx, however our understanding of this process remains incomplete. Here we show that Ca2+ influx via STIM1/Orai1 calcium channels, which cluster near FAs, leads to activation of the GTPase Arf5 via the Ca2+-activated GEF IQSec1, and that both IQSec1 and Arf5 activation are essential for adhesion disassembly. We further show that IQSec1 forms a complex with the lipid transfer protein ORP3, and that Ca2+ influx triggers PKC-dependent translocation of this complex to ER/plasma membrane contact sites adjacent to FAs. In addition to allosterically activating IQSec1, ORP3 also extracts PI4P from the PM, in exchange for phosphatidylcholine. ORP3-mediated lipid exchange is also important for FA turnover. Together, these findings identify a new pathway that links calcium influx to FA turnover during cell migration.


2021 ◽  
Vol 221 (1) ◽  
Author(s):  
Asami Kawasaki ◽  
Akiko Sakai ◽  
Hiroki Nakanishi ◽  
Junya Hasegawa ◽  
Tomohiko Taguchi ◽  
...  

Membrane contact sites (MCSs) serve as a zone for nonvesicular lipid transport by oxysterol-binding protein (OSBP)-related proteins (ORPs). ORPs mediate lipid countertransport, in which two distinct lipids are transported counterdirectionally. How such lipid countertransport controls specific biological functions, however, remains elusive. We report that lipid countertransport by ORP10 at ER–endosome MCSs regulates retrograde membrane trafficking. ORP10, together with ORP9 and VAP, formed ER–endosome MCSs in a phosphatidylinositol 4-phosphate (PI4P)-dependent manner. ORP10 exhibited a lipid exchange activity toward its ligands, PI4P and phosphatidylserine (PS), between liposomes in vitro, and between the ER and endosomes in situ. Cell biological analysis demonstrated that ORP10 supplies a pool of PS from the ER, in exchange for PI4P, to endosomes where the PS-binding protein EHD1 is recruited to facilitate endosome fission. Our study highlights a novel lipid exchange at ER–endosome MCSs as a nonenzymatic PI4P-to-PS conversion mechanism that organizes membrane remodeling during retrograde membrane trafficking.


Biomolecules ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 928
Author(s):  
Nina Criado Santos ◽  
Vladimir Girik ◽  
Paula Nunes-Hasler

Oxysterol binding related proteins 5 and 8 (ORP5 and ORP8) are two close homologs of the larger oxysterol binding protein (OSBP) family of sterol sensors and lipid transfer proteins (LTP). Early studies indicated these transmembrane proteins, anchored to the endoplasmic reticulum (ER), bound and sensed cholesterol and oxysterols. They were identified as important for diverse cellular functions including sterol homeostasis, vesicular trafficking, proliferation and migration. In addition, they were implicated in lipid-related diseases such as atherosclerosis and diabetes, but also cancer, although their mechanisms of action remained poorly understood. Then, alongside the increasing recognition that membrane contact sites (MCS) serve as hubs for non-vesicular lipid transfer, added to their structural similarity to other LTPs, came discoveries showing that ORP5 and 8 were in fact phospholipid transfer proteins that rather sense and exchange phosphatidylserine (PS) for phosphoinositides, including phosphatidylinositol-4-phosphate (PI(4)P) and potentially phosphatidylinositol-(4,5)-bisphosphate (PI(4,5)P2). Evidence now points to their action at MCS between the ER and various organelles including the plasma membrane, lysosomes, mitochondria, and lipid droplets. Dissecting exactly how this unexpected phospholipid transfer function connects with sterol regulation in health or disease remains a challenge for future studies.


2020 ◽  
Vol 220 (1) ◽  
Author(s):  
Yuichi Wakana ◽  
Kaito Hayashi ◽  
Takumi Nemoto ◽  
Chiaki Watanabe ◽  
Masato Taoka ◽  
...  

In response to cholesterol deprivation, SCAP escorts SREBP transcription factors from the endoplasmic reticulum to the Golgi complex for their proteolytic activation, leading to gene expression for cholesterol synthesis and uptake. Here, we show that in cholesterol-fed cells, ER-localized SCAP interacts through Sac1 phosphatidylinositol 4-phosphate (PI4P) phosphatase with a VAP–OSBP complex, which mediates counter-transport of ER cholesterol and Golgi PI4P at ER–Golgi membrane contact sites (MCSs). SCAP knockdown inhibited the turnover of PI4P, perhaps due to a cholesterol transport defect, and altered the subcellular distribution of the VAP–OSBP complex. As in the case of perturbation of lipid transfer complexes at ER–Golgi MCSs, SCAP knockdown inhibited the biogenesis of the trans-Golgi network–derived transport carriers CARTS, which was reversed by expression of wild-type SCAP or a Golgi transport–defective mutant, but not of cholesterol sensing–defective mutants. Altogether, our findings reveal a new role for SCAP under cholesterol-fed conditions in the facilitation of CARTS biogenesis via ER–Golgi MCSs, depending on the ER cholesterol.


2018 ◽  
Vol 217 (10) ◽  
pp. 3322-3324 ◽  
Author(s):  
Mingming Gao ◽  
Hongyuan Yang

The evolutionarily conserved VPS13 proteins localize to multiple membrane contact sites though their function and regulation has been elusive. Bean et al. (2018. J. Cell Biol. https://doi.org/10.1083/jcb.201804111) found that competitive adaptors control the different localizations of yeast Vps13p, while Kumar et al. (2018. J. Cell Biol. https://doi.org/10.1083/jcb.201807019) provide biochemical and structural evidence for VPS13 proteins in the nonvesicular transport of phospholipids.


2021 ◽  
Author(s):  
David Kovacs ◽  
Anne-Sophie Gay ◽  
Lucile Fleuriot ◽  
Delphine Debayle ◽  
Ana Rita Dias Araujo ◽  
...  

Golgi lipid environment regulates sorting and cargo secretion. However, the mechanisms that spatiotemporally control the lipid composition of the secretory membranes to drive cargo trafficking are poorly understood. Lipid transfer proteins regulate the concentration of specific lipids at membrane contact sites. We hypothesised that by catalysing cholesterol/PI(4)P exchange at ER-trans-Golgi membrane contact sites the lipid transfer protein oxysterol binding protein (OSBP) affects the secretion of a subset of cargoes. Here, we report that OSBP is a major epithelial protein as its inhibition leads to complete loss of apico-basal polarity. By mapping the OSBP proximity proteome with the biotin ligase TurboID, we found that OSBP controls the secretion of multiple membrane associated proteins, including key polarity determinants such as E-cadherin. Mechanistically, we established that OSBP contributes to E-cadherin secretion by supplying cholesterol to post-Golgi membranes. Importantly, when cells downregulate cell-cell junctions upon epithelial-to-mesenchymal transition, they re-wire their lipid homeostasis and downregulate OSBP as well, thus altering the trafficking of the OSBP-dependent secretory cargoes.


Sign in / Sign up

Export Citation Format

Share Document