scholarly journals The rate and molecular spectrum of mutation are selectively maintained in yeast

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Haoxuan Liu ◽  
Jianzhi Zhang

AbstractWhat determines the rate (μ) and molecular spectrum of mutation is a fundamental question. The prevailing hypothesis asserts that natural selection against deleterious mutations has pushed μ to the minimum achievable in the presence of genetic drift, or the drift barrier. Here we show that, contrasting this hypothesis, μ substantially exceeds the drift barrier in diverse organisms. Random mutation accumulation (MA) in yeast frequently reduces μ, and deleting the newly discovered mutator gene PSP2 nearly halves μ. These results, along with a comparison between the MA and natural yeast strains, demonstrate that μ is maintained above the drift barrier by stabilizing selection. Similar comparisons show that the mutation spectrum such as the universal AT mutational bias is not intrinsic but has been selectively preserved. These findings blur the separation of mutation from selection as distinct evolutionary forces but open the door to alleviating mutagenesis in various organisms by genome editing.

2018 ◽  
Author(s):  
Antonios Kioukis ◽  
Pavlos Pavlidis

The evolution of a population by means of genetic drift and natural selection operating on a gene regulatory network (GRN) of an individual has not been scrutinized in depth. Thus, the relative importance of various evolutionary forces and processes on shaping genetic variability in GRNs is understudied. Furthermore, it is not known if existing tools that identify recent and strong positive selection from genomic sequences, in simple models of evolution, can detect recent positive selection when it operates on GRNs. Here, we propose a simulation framework, called EvoNET, that simulates forward-in-time the evolution of GRNs in a population. Since the population size is finite, random genetic drift is explicitly applied. The fitness of a mutation is not constant, but we evaluate the fitness of each individual by measuring its genetic distance from an optimal genotype. Mutations and recombination may take place from generation to generation, modifying the genotypic composition of the population. Each individual goes through a maturation period, where its GRN reaches equilibrium. At the next step, individuals compete to produce the next generation. As time progresses, the beneficial genotypes push the population higher in the fitness landscape. We examine properties of the GRN evolution such as robustness against the deleterious effect of mutations and the role of genetic drift. We confirm classical results from Andreas Wagner’s work that GRNs show robustness against mutations and we provide new results regarding the interplay between random genetic drift and natural selection.


Paleobiology ◽  
2006 ◽  
Vol 32 (4) ◽  
pp. 562-577 ◽  
Author(s):  
Michael A. Bell ◽  
Matthew P. Travis ◽  
D. Max Blouw

Inferring the causes for change in the fossil record has been a persistent problem in evolutionary biology. Three independent lines of evidence indicate that a lineage of the fossil stickleback fish Gasterosteus doryssus experienced directional natural selection for reduction of armor. Nonetheless, application to this lineage of three methods to infer natural selection in the fossil record could not exclude random process as the cause for armor change. Excluding stabilizing selection and genetic drift as the mechanisms for biostratigraphic patterns in the fossil record when directional natural selection was the actual cause is very difficult. Biostratigraphic sequences with extremely fine temporal resolution among samples and other favorable properties must be used to infer directional selection in the fossil record.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Wen Huang ◽  
Richard F Lyman ◽  
Rachel A Lyman ◽  
Mary Anna Carbone ◽  
Susan T Harbison ◽  
...  

Mutation and natural selection shape the genetic variation in natural populations. Here, we directly estimated the spontaneous mutation rate by sequencing new Drosophila mutation accumulation lines maintained with minimal natural selection. We inferred strong stabilizing natural selection on quantitative traits because genetic variation among wild-derived inbred lines was much lower than predicted from a neutral model and the mutational effects were much larger than allelic effects of standing polymorphisms. Stabilizing selection could act directly on the traits, or indirectly from pleiotropic effects on fitness. However, our data are not consistent with simple models of mutation-stabilizing selection balance; therefore, further empirical work is needed to assess the balance of evolutionary forces responsible for quantitative genetic variation.


Genetics ◽  
2022 ◽  
Author(s):  
Benjamin H Good

Abstract The statistical associations between mutations, collectively known as linkage disequilibrium (LD), encode important information about the evolutionary forces acting within a population. Yet in contrast to single-site analogues like the site frequency spectrum, our theoretical understanding of linkage disequilibrium remains limited. In particular, little is currently known about how mutations with different ages and fitness costs contribute to expected patterns of LD, even in simple settings where recombination and genetic drift are the major evolutionary forces. Here, I introduce a forward-time framework for predicting linkage disequilibrium between pairs of neutral and deleterious mutations as a function of their present-day frequencies. I show that the dynamics of linkage disequilibrium become much simpler in the limit that mutations are rare, where they admit a simple heuristic picture based on the trajectories of the underlying lineages. I use this approach to derive analytical expressions for a family of frequency-weighted LD statistics as a function of the recombination rate, the frequency scale, and the additive and epistatic fitness costs of the mutations. I find that the frequency scale can have a dramatic impact on the shapes of the resulting LD curves, reflecting the broad range of time scales over which these correlations arise. I also show that the differences between neutral and deleterious LD are not purely driven by differences in their mutation frequencies, and can instead display qualitative features that are reminiscent of epistasis. I conclude by discussing the implications of these results for recent LD measurements in bacteria. This forward-time approach may provide a useful framework for predicting linkage disequilibrium across a range of evolutionary scenarios.


2017 ◽  
Vol 372 (1724) ◽  
pp. 20160349 ◽  
Author(s):  
Nina G. Jablonski ◽  
George Chaplin

Humans are a colourful species of primate, with human skin, hair and eye coloration having been influenced by a great variety of evolutionary forces throughout prehistory. Functionally naked skin has been the physical interface between the physical environment and the human body for most of the history of the genus Homo , and hence skin coloration has been under intense natural selection. From an original condition of protective, dark, eumelanin-enriched coloration in early tropical-dwelling Homo and Homo sapiens , loss of melanin pigmentation occurred under natural selection as Homo sapiens dispersed into non-tropical latitudes of Africa and Eurasia. Genes responsible for skin, hair and eye coloration appear to have been affected significantly by population bottlenecks in the course of Homo sapiens dispersals. Because specific skin colour phenotypes can be created by different combinations of skin colour–associated genetic markers, loss of genetic variability due to genetic drift appears to have had negligible effects on the highly redundant genetic ‘palette’ for the skin colour. This does not appear to have been the case for hair and eye coloration, however, and these traits appear to have been more strongly influenced by genetic drift and, possibly, sexual selection. This article is part of the themed issue ‘Animal coloration: production, perception, function and application’.


2019 ◽  
Author(s):  
David Willemsen ◽  
Rongfeng Cui ◽  
Martin Reichard ◽  
Dario Riccardo Valenzano

AbstractThe evolutionary forces shaping life history trait divergence within species are largely unknown. Killifish (oviparous Cyprinodontiformes) evolved an annual life cycle as an exceptional adaptation to life in arid savannah environments characterized by seasonal water availability. The turquoise killifish (Nothobranchius furzeri) is the shortest-lived vertebrate known to science and displays differences in lifespan among wild populations, representing an ideal natural experiment in the evolution and diversification of life history. Here, by combining genome sequencing and population genetics, we investigate the evolutionary forces shaping lifespan among turquoise killifish populations. We generate an improved reference assembly for the turquoise killifish genome, trace the evolutionary origin of the sex chromosome, and identify genes under strong positive and purifying selection, as well as those evolving neutrally. We find that the shortest-lived turquoise killifish populations, which dwell in fragmented and isolated habitats at the outer margin of the geographical range of the species, are characterized by small effective population size and accumulate throughout the genome several small to large-effect deleterious mutations due to genetic drift. The genes most affected by drift in the shortest-lived turquoise killifish populations are involved in the WNT signalling pathway, neurodegenerative disorders, cancer and the mTOR pathway. As the populations under stronger genetic drift are the shortest-lived ones, we propose that limited population size due to habitat fragmentation and repeated population bottlenecks, by causing the genome-wide accumulation of deleterious mutations, cumulatively contribute to the short adult lifespan in turquoise killifish populations.


2020 ◽  
Author(s):  
Benjamin H. Good

The statistical associations between mutations, collectively known as linkage disequilibrium (LD), encode important information about the evolutionary forces acting within a population. Yet in contrast to single-site analogues like the site frequency spectrum, our theoretical understanding of linkage disequilibrium remains limited. In particular, little is currently known about how mutations with different ages and fitness costs contribute to expected patterns of LD, even in simple settings where recombination and genetic drift are the major evolutionary forces. Here, we introduce a forward-time framework for predicting linkage disequilibrium between pairs of neutral and deleterious mutations as a function of their present-day frequencies. We show that the dynamics of linkage disequilibrium become much simpler in the limit that mutations are rare, where they admit a simple heuristic picture based on the trajectories of the underlying lineages. We use this approach to derive analytical expressions for a family of frequency-weighted LD statistics as a function of the recombination rate, the frequency scale, and the additive and epistatic fitness costs of the mutations. We find that the frequency scale can have a dramatic impact on the shapes of the resulting LD curves, reflecting the broad range of time scales over which these correlations arise. We also show that the differences between neutral and deleterious LD are not purely driven by differences in their mutation frequencies, and can instead display qualitative features that are reminiscent of epistasis. We conclude by discussing the implications of these results for recent LD measurements in bacteria. This forward-time approach may provide a useful framework for predicting linkage disequilibrium across a range of evolutionary scenarios.


2005 ◽  
Vol 85 (3) ◽  
pp. 171-181 ◽  
Author(s):  
ARNAUD LE ROUZIC ◽  
GRÉGORY DECELIERE

Although transposable elements (TEs) have been found in all organisms in which they have been looked for, the ways in which they invade genomes and populations are still a matter of debate. By extending the classical models of population genetics, several approaches have been developed to account for the dynamics of TEs, especially in Drosophila melanogaster. While the formalism of these models is based on simplifications, they enable us to understand better how TEs invade genomes, as a result of multiple evolutionary forces including duplication, deletion, self-regulation, natural selection and genetic drift. The aim of this paper is to review the assumptions and the predictions of these different models by highlighting the importance of the specific characteristics of both the TEs and the hosts, and the host/TE relationships. Then, perspectives in this domain will be discussed.


Author(s):  
Thibault Leroy ◽  
Marjolaine Rousselle ◽  
Marie-Ka Tilak ◽  
Aude Caizergues ◽  
Celine Scornavacca ◽  
...  

Due to their limited ranges and inherent isolation, island species have long been recognized as crucial systems for tackling a range of evolutionary questions, including in the early study of speciation. Such species have been less studied in the understanding of the evolutionary forces driving DNA sequence evolution. Island species usually have lower census population sizes (N) than continental species and, supposedly, lower effective population sizes (Ne). Given that both the rates of change caused by genetic drift and by selection are dependent upon Ne, island species are theoretically expected to exhibit (i) lower genetic diversity, (ii) less effective natural selection against slightly deleterious mutations, and (iii) a lower rate of adaptive evolution. Here, we have used a large set of newly sequenced and published whole genome sequences of Passerida bird species or subspecies (14 insular and 11 continental) to test these predictions. We empirically confirm that island species exhibit lower census size and Ne, supporting the hypothesis that the smaller area available on islands constrains the upper bound of Ne. In the insular species, we find significantly lower nucleotide diversity in coding regions, higher ratios of non-synonymous to synonymous polymorphisms, and lower adaptive substitution rates. Our results provide robust evidence that the lower Ne experienced by island species has affected both the ability of natural selection to efficiently remove weakly deleterious mutations and also the adaptive potential of island species, therefore providing considerable empirical support for the nearly neutral theory. We discuss the implications for both evolutionary and conservation biology.


2019 ◽  
Author(s):  
Sergio Forcelloni ◽  
Andrea Giansanti

ABSTRACTIn this study, we perform a systematic analysis of evolutionary forces (i.e., mutational bias and natural selection) that shape the codon usage bias of human genes encoding for different structural and functional variants of proteins. Well-structured proteins are expected to be more under control by natural selection than intrinsically disordered proteins because one or few mutations (even synonymous) in the genes can result in a protein that no longer folds correctly. On the contrary, intrinsically disordered proteins are generally thought to evolve more rapidly than well-folded proteins, primarily attributed to relaxed purifying natural selection due to the lack of structural constraints. Using different genetic tools, we find compelling evidence that intrinsically disordered proteins are the variant of human proteins on which both mutational bias and natural selection act more effectively, corroborating their essential role for evolutionary adaptability and protein evolvability. We speculate that intrinsically disordered proteins have a high tolerance to mutations (both neutral and adaptive) but also a selective propensity to preserve their structural disorder, i.e., flexibility and conformational dynamics under physiological conditions. Additionally, we confirm not only that intrinsically disordered proteins are preferentially encoded by GC-rich genes, but also that they are characterized by the highest fraction of CpG-sites in the sequences, implying a higher susceptibility to methylation resulting in C-T transition mutations. Our results provide new insight about protein evolution and human genetic diseases identifying intrinsically disordered proteins as reservoirs for evolutionary innovations.


Sign in / Sign up

Export Citation Format

Share Document