perception function
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 2)

H-INDEX

11
(FIVE YEARS 0)

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3941
Author(s):  
Shengming Li ◽  
Lin Feng ◽  
Yunfei Ge ◽  
Li Zhu ◽  
Liang Zhao

The electronic nose is the olfactory organ of the robot, which is composed of a large number of sensors to perceive the smell of objects through free diffusion. Traditionally, it is difficult to realize the active perception function, and it is difficult to meet the requirements of small size, low cost, and quick response that robots require. In order to address these issues, a novel electronic nose with active perception was designed and an ensemble learning method was proposed to distinguish the smell of different objects. An array of three MQ303 semiconductor gas sensors and an electrochemical sensor DART-2-Fe5 were used to construct the novel electronic nose, and the proposed ensemble learning method with four algorithms realized the active odor perception function. The experiment results verified that the accuracy of the active odor perception can reach more than 90%, even though it used 30% training data. The novel electronic nose with active perception based on the ensemble learning method can improve the efficiency and accuracy of odor data collection and olfactory perception.


2021 ◽  
Author(s):  
Sijia Ge ◽  
Jiajia Li ◽  
Jian Geng ◽  
Shinian Liu ◽  
Hua Xu ◽  
...  

Developing smart temperature-sensitive hydrogels with wide response range, high stretchable and self-healable properties for simulation of the temperature perception function of the human skin remains a great challenge. Here, a...


2017 ◽  
Vol 372 (1724) ◽  
pp. 20160340 ◽  
Author(s):  
Thomas N. Sherratt ◽  
Casey A. Peet-Paré

We consider why imperfect deceptive mimics can persist when it appears to be in the predator's interest to discriminate finely between mimics and their models. One theory is that a receiver will accept being duped if the model and mimic overlap in appearance and the relative costs of attacking the model are high. However, a more fundamental explanation for the difficulty of discrimination is not based on perceptual uncertainty, but simply based on a lack of information. In particular, predators in the process of learning may cease sampling imperfect mimics entirely because the immediate pay-off and future value of information is low, allowing such mimics to persist. This outcome will be particularly likely when the model is relatively costly to attack and/or the discriminative rules the predator has to learn are complex. Information limitations neatly explain why predators tend to adopt discriminative rules based on single traits (such as stripe colour), rather than on combinations of traits (such as stripe order). They also explain why predators utilize certain salient discriminative traits while ignoring equally informative ones (a phenomenon known as overshadowing), and why imperfect mimics may be more common in phenotypically diverse prey communities. This article is part of the themed issue ‘Animal coloration: production, perception, function and application’.


2017 ◽  
Vol 372 (1724) ◽  
pp. 20170047 ◽  
Author(s):  
Tim Caro ◽  
Mary Caswell Stoddard ◽  
Devi Stuart-Fox

2017 ◽  
Vol 372 (1724) ◽  
pp. 20160338 ◽  
Author(s):  
Olle Lind ◽  
Miriam J. Henze ◽  
Almut Kelber ◽  
Daniel Osorio

The evolutionary relationship between signals and animal senses has broad significance, with potential consequences for speciation, and for the efficacy and honesty of biological communication. Here we outline current understanding of the diversity of colour vision in two contrasting groups: the phylogenetically conservative birds, and the more variable butterflies. Evidence for coevolution of colour signals and vision exists in both groups, but is limited to observations of phenotypic differences between visual systems, which might be correlated with coloration. Here, to illustrate how one might interpret the evolutionary significance of such differences, we used colour vision modelling based on an avian eye to evaluate the effects of variation in three key characters: photoreceptor spectral sensitivity, oil droplet pigmentation and the proportions of different photoreceptor types. The models predict that physiologically realistic changes in any one character will have little effect, but complementary shifts in all three can substantially affect discriminability of three types of natural spectra. These observations about the adaptive landscape of colour vision may help to explain the general conservatism of photoreceptor spectral sensitivities in birds. This approach can be extended to other types of eye and spectra to inform future work on coevolution of coloration and colour vision. This article is part of the themed issue ‘Animal coloration: production, perception, function and application’.


2017 ◽  
Vol 372 (1724) ◽  
pp. 20160350 ◽  
Author(s):  
Hannah M. Rowland ◽  
Robert P. Burriss

The colour of our skin and clothing affects how others perceive us and how we behave. Human skin colour varies conspicuously with genetic ancestry, but even subtle changes in skin colour due to diet, blood oxygenation and hormone levels influence social perceptions. In this review, we describe the theoretical and empirical frameworks in which human colour is researched. We explore how subtle skin colour differences relate to judgements of health and attractiveness. Also, because humans are one of the few organisms able to manipulate their apparent colour, we review how cosmetics and clothing are implicated in courtship and competition, both inside the laboratory and in the real world. Research on human colour is in its infancy compared with human psychophysics and colour research in non-human animals, and hence we present best-practice guidelines for methods and reporting, which we hope will improve the validity and reproducibility of studies on human coloration. This article is part of the themed issue ‘Animal coloration: production, perception, function and application’.


2017 ◽  
Vol 372 (1724) ◽  
pp. 20160349 ◽  
Author(s):  
Nina G. Jablonski ◽  
George Chaplin

Humans are a colourful species of primate, with human skin, hair and eye coloration having been influenced by a great variety of evolutionary forces throughout prehistory. Functionally naked skin has been the physical interface between the physical environment and the human body for most of the history of the genus Homo , and hence skin coloration has been under intense natural selection. From an original condition of protective, dark, eumelanin-enriched coloration in early tropical-dwelling Homo and Homo sapiens , loss of melanin pigmentation occurred under natural selection as Homo sapiens dispersed into non-tropical latitudes of Africa and Eurasia. Genes responsible for skin, hair and eye coloration appear to have been affected significantly by population bottlenecks in the course of Homo sapiens dispersals. Because specific skin colour phenotypes can be created by different combinations of skin colour–associated genetic markers, loss of genetic variability due to genetic drift appears to have had negligible effects on the highly redundant genetic ‘palette’ for the skin colour. This does not appear to have been the case for hair and eye coloration, however, and these traits appear to have been more strongly influenced by genetic drift and, possibly, sexual selection. This article is part of the themed issue ‘Animal coloration: production, perception, function and application’.


2017 ◽  
Vol 372 (1724) ◽  
pp. 20160344 ◽  
Author(s):  
Tim Caro ◽  
William L. Allen

Organisms frequently gain advantages when they engage in signalling with individuals of other species. Here, we provide a functionally structured framework of the great variety of interspecific visual signals seen in nature, and then describe the different signalling mechanisms that have evolved in response to each of these functional requirements. We propose that interspecific visual signalling can be divided into six major functional categories: anti-predator, food acquisition, anti-parasite, host acquisition, reproductive and agonistic signalling, with each function enabled by several distinct mechanisms. We support our classification by reviewing the ecological and behavioural drivers of interspecific signalling in animals and plants, principally focusing on comparative studies that address large-scale patterns of diversity. Collating diverse examples of interspecific signalling into an organized set of functional and mechanistic categories places anachronistic behavioural and morphological labels in fresh context, clarifies terminology and redirects research effort towards understanding environmental influences driving interspecific signalling in nature. This article is part of the themed issue ‘Animal coloration: production, perception, function and application’.


2017 ◽  
Vol 372 (1724) ◽  
pp. 20160352 ◽  
Author(s):  
John A. Endler ◽  
Johanna Mappes

Animal colour patterns are a model system for understanding evolution because they are unusually accessible for study and experimental manipulation. This is possible because their functions are readily identifiable. In this final paper of the symposium we provide a diagram of the processes affecting colour patterns and use this to summarize their functions and put the other papers in a broad context. This allows us to identify significant ‘holes’ in the field that only become obvious when we see the processes affecting colour patterns, and their interactions, as a whole. We make suggestions about new directions of research that will enhance our understanding of both the evolution of colour patterns and visual signalling but also illuminate how the evolution of multiple interacting traits works. This article is part of the themed issue ‘Animal coloration: production, perception, function and application’.


Sign in / Sign up

Export Citation Format

Share Document