scholarly journals Island songbirds as windows into evolution in small populations

Author(s):  
Thibault Leroy ◽  
Marjolaine Rousselle ◽  
Marie-Ka Tilak ◽  
Aude Caizergues ◽  
Celine Scornavacca ◽  
...  

Due to their limited ranges and inherent isolation, island species have long been recognized as crucial systems for tackling a range of evolutionary questions, including in the early study of speciation. Such species have been less studied in the understanding of the evolutionary forces driving DNA sequence evolution. Island species usually have lower census population sizes (N) than continental species and, supposedly, lower effective population sizes (Ne). Given that both the rates of change caused by genetic drift and by selection are dependent upon Ne, island species are theoretically expected to exhibit (i) lower genetic diversity, (ii) less effective natural selection against slightly deleterious mutations, and (iii) a lower rate of adaptive evolution. Here, we have used a large set of newly sequenced and published whole genome sequences of Passerida bird species or subspecies (14 insular and 11 continental) to test these predictions. We empirically confirm that island species exhibit lower census size and Ne, supporting the hypothesis that the smaller area available on islands constrains the upper bound of Ne. In the insular species, we find significantly lower nucleotide diversity in coding regions, higher ratios of non-synonymous to synonymous polymorphisms, and lower adaptive substitution rates. Our results provide robust evidence that the lower Ne experienced by island species has affected both the ability of natural selection to efficiently remove weakly deleterious mutations and also the adaptive potential of island species, therefore providing considerable empirical support for the nearly neutral theory. We discuss the implications for both evolutionary and conservation biology.

2009 ◽  
Vol 276 (1660) ◽  
pp. 1201-1209 ◽  
Author(s):  
Maurine Neiman ◽  
Douglas R Taylor

A fundamental observation across eukaryotic taxa is that mitochondrial genomes have a higher load of deleterious mutations than nuclear genomes. Identifying the evolutionary forces that drive this difference is important to understanding the rates and patterns of sequence evolution, the efficacy of natural selection, the maintenance of sex and recombination and the mechanisms underlying human ageing and many diseases. Recent studies have implicated the presumed asexuality of mitochondrial genomes as responsible for their high mutational load. We review the current body of knowledge on mitochondrial mutation accumulation and recombination, and conclude that asexuality, per se , may not be the primary determinant of the high mutation load in mitochondrial DNA (mtDNA). Very little recombination is required to counter mutation accumulation, and recent evidence suggests that mitochondrial genomes do experience occasional recombination. Instead, a high rate of accumulation of mildly deleterious mutations in mtDNA may result from the small effective population size associated with effectively haploid inheritance. This type of transmission is nearly ubiquitous among mitochondrial genomes. We also describe an experimental framework using variation in mating system between closely related species to disentangle the root causes of mutation accumulation in mitochondrial genomes.


2015 ◽  
Author(s):  
Jing Wang ◽  
Nathaniel R Street ◽  
Douglas G Scofield ◽  
Pär K Ingvarsson

AbstractA central aim of evolutionary genomics is to identify the relative roles that various evolutionary forces have played in generating and shaping genetic variation within and among species. Here we use whole-genome re-sequencing data to characterize and compare genome-wide patterns of nucleotide polymorphism, site frequency spectrum and population-scaled recombination rates in three species ofPopulus:P. tremula, P. tremuloidesandP. trichocarpa. We find thatP. tremuloideshas the highest level of genome-wide variation, skewed allele frequencies and population-scaled recombination rates, whereasP. trichocarpaharbors the lowest. Our findings highlight multiple lines of evidence suggesting that natural selection, both due to purifying and positive selection, has widely shaped patterns of nucleotide polymorphism at linked neutral sites in all three species. Differences in effective population sizes and rates of recombination are largely explaining the disparate magnitudes and signatures of linked selection we observe among species. The present work provides the first phylogenetic comparative study at genome-wide scale in forest trees. This information will also improve our ability to understand how various evolutionary forces have interacted to influence genome evolution among related species.


2020 ◽  
Vol 287 (1922) ◽  
pp. 20192613 ◽  
Author(s):  
Elisa G. Dierickx ◽  
Simon Yung Wa Sin ◽  
H. Pieter J. van Veelen ◽  
M. de L. Brooke ◽  
Yang Liu ◽  
...  

Small effective population sizes could expose island species to inbreeding and loss of genetic variation. Here, we investigate factors shaping genetic diversity in the Raso lark, which has been restricted to a single islet for approximately 500 years, with a population size of a few hundred. We assembled a reference genome for the related Eurasian skylark and then assessed diversity and demographic history using RAD-seq data (75 samples from Raso larks and two related mainland species). We first identify broad tracts of suppressed recombination in females, indicating enlarged neo-sex chromosomes. We then show that genetic diversity across autosomes in the Raso lark is lower than in its mainland relatives, but inconsistent with long-term persistence at its current population size. Finally, we find that genetic signatures of the recent population contraction are overshadowed by an ancient expansion and persistence of a very large population until the human settlement of Cape Verde. Our findings show how genome-wide approaches to study endangered species can help avoid confounding effects of genome architecture on diversity estimates, and how present-day diversity can be shaped by ancient demographic events.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
José Martín Pujolar ◽  
Mozes P. K. Blom ◽  
Andrew Hart Reeve ◽  
Jonathan D. Kennedy ◽  
Petter Zahl Marki ◽  
...  

AbstractTropical mountains harbor exceptional concentrations of Earth’s biodiversity. In topographically complex landscapes, montane species typically inhabit multiple mountainous regions, but are absent in intervening lowland environments. Here we report a comparative analysis of genome-wide DNA polymorphism data for population pairs from eighteen Indo-Pacific bird species from the Moluccan islands of Buru and Seram and from across the island of New Guinea. We test how barrier strength and relative elevational distribution predict population differentiation, rates of historical gene flow, and changes in effective population sizes through time. We find population differentiation to be consistently and positively correlated with barrier strength and a species’ altitudinal floor. Additionally, we find that Pleistocene climate oscillations have had a dramatic influence on the demographics of all species but were most pronounced in regions of smaller geographic area. Surprisingly, even the most divergent taxon pairs at the highest elevations experience gene flow across barriers, implying that dispersal between montane regions is important for the formation of montane assemblages.


2019 ◽  
Author(s):  
C. Schmidt ◽  
M. Domaratzki ◽  
R.P. Kinnunen ◽  
J. Bowman ◽  
C.J. Garroway

AbstractUrbanization and associated environmental changes are causing global declines in vertebrate populations. In general, population declines of the magnitudes now detected should lead to reduced effective population sizes for animals living in proximity to humans and disturbed lands. This is cause for concern because effective population sizes set the rate of genetic diversity loss due to genetic drift, the rate of increase in inbreeding, and the efficiency with which selection can act on beneficial alleles. We predicted that the effects of urbanization should decrease effective population size and genetic diversity, and increase population-level genetic differentiation. To test for such patterns, we repurposed and reanalyzed publicly archived genetic data sets for North American birds and mammals. After filtering, we had usable raw genotype data from 85 studies and 41,023 individuals, sampled from 1,008 locations spanning 41 mammal and 25 bird species. We used census-based urban-rural designations, human population density, and the Human Footprint Index as measures of urbanization and habitat disturbance. As predicted, mammals sampled in more disturbed environments had lower effective population sizes and genetic diversity, and were more genetically differentiated from those in more natural environments. There were no consistent relationships detectable for birds. This suggests that, in general, mammal populations living near humans may have less capacity to respond adaptively to further environmental changes, and be more likely to suffer from effects of inbreeding.


2021 ◽  
Author(s):  
Enes Dilber ◽  
Jonathan Terhorst

Neutrality tests such as Tajima's D and Fay and Wu's H are standard implements in the population genetics toolbox. One of their most common uses is to scan the genome for signals of natural selection. However, it is well understood that deviance measures like D and H are confounded by other evolutionary forces---in particular, population expansion---that may be unrelated to selection. Because they are not model-based, it is not clear how to deconfound these statistics in a principled way. In this paper we derive new likelihood-based methods for detecting natural selection which are robust to confounding by fluctuations in effective population size. At the core of our method is a novel probabilistic model of tree imbalance, which generalizes Kingman's coalescent to allow certain aberrant tree topologies to arise more frequently than is expected under neutrality. We derive a frequency spectrum-based estimator which can be used in place of D, and also extend to the case where genealogies are first estimated. We benchmark our methods on real and simulated data, and provide an open source software implementation.


2010 ◽  
Vol 365 (1543) ◽  
pp. 1127-1138 ◽  
Author(s):  
Paquita E. A. Hoeck ◽  
Jennifer L. Bollmer ◽  
Patricia G. Parker ◽  
Lukas F. Keller

Small and isolated island populations provide ideal systems to study the effects of limited population size, genetic drift and gene flow on genetic diversity. We assessed genetic diversity within and differentiation among 19 mockingbird populations on 15 Galápagos islands, covering all four endemic species, using 16 microsatellite loci. We tested for signs of drift and gene flow, and used historic specimens to assess genetic change over the last century and to estimate effective population sizes. Within-population genetic diversity and effective population sizes varied substantially among island populations and correlated strongly with island size, suggesting that island size serves as a good predictor for effective population size. Genetic differentiation among populations was pronounced and increased with geographical distance. A century of genetic drift did not change genetic diversity on an archipelago-wide scale, but genetic drift led to loss of genetic diversity in small populations, especially in one of the two remaining populations of the endangered Floreana mockingbird. Unlike in other Galápagos bird species such as the Darwin's finches, gene flow among mockingbird populations was low. The clear pattern of genetically distinct populations reflects the effects of genetic drift and suggests that Galápagos mockingbirds are evolving in relative isolation.


2019 ◽  
Vol 37 (2) ◽  
pp. 469-474 ◽  
Author(s):  
Verena E Kutschera ◽  
Jelmer W Poelstra ◽  
Fidel Botero-Castro ◽  
Nicolas Dussex ◽  
Neil J Gemmell ◽  
...  

Abstract Theory predicts that deleterious mutations accumulate more readily in small populations. As a consequence, mutation load is expected to be elevated in species where life-history strategies and geographic or historical contingencies reduce the number of reproducing individuals. Yet, few studies have empirically tested this prediction using genome-wide data in a comparative framework. We collected whole-genome sequencing data for 147 individuals across seven crow species (Corvus spp.). For each species, we estimated the distribution of fitness effects of deleterious mutations and compared it with proxies of the effective population size Ne. Island species with comparatively smaller geographic range sizes had a significantly increased mutation load. These results support the view that small populations have an elevated risk of mutational meltdown, which may contribute to the higher extinction rates observed in island species.


1989 ◽  
Vol 53 (3) ◽  
pp. 215-221 ◽  
Author(s):  
Zhao-Bang Zeng

SummaryEvolutionary consequences of natural selection, migration, genotype–environment interaction, and random genetic drift on interpopulation variation and covariation of quantitative characters are analysed in terms of a selection model that partitions natural selection into directional and stabilizing components. Without migration, interpopulation variation and covariation depend mainly on the pattern and intensities of selection among populations and the harmonic mean of effective population sizes. Both transient and equilibrium covariance structures are formulated with suitable approximations. Migration reduces the differentiation among populations, but its effect is less with genotype–environment interaction. In some special cases of genotype–environment interaction, the equilibrium interpopulation variation and covariation is independent of migration.


2019 ◽  
Author(s):  
David Willemsen ◽  
Rongfeng Cui ◽  
Martin Reichard ◽  
Dario Riccardo Valenzano

AbstractThe evolutionary forces shaping life history trait divergence within species are largely unknown. Killifish (oviparous Cyprinodontiformes) evolved an annual life cycle as an exceptional adaptation to life in arid savannah environments characterized by seasonal water availability. The turquoise killifish (Nothobranchius furzeri) is the shortest-lived vertebrate known to science and displays differences in lifespan among wild populations, representing an ideal natural experiment in the evolution and diversification of life history. Here, by combining genome sequencing and population genetics, we investigate the evolutionary forces shaping lifespan among turquoise killifish populations. We generate an improved reference assembly for the turquoise killifish genome, trace the evolutionary origin of the sex chromosome, and identify genes under strong positive and purifying selection, as well as those evolving neutrally. We find that the shortest-lived turquoise killifish populations, which dwell in fragmented and isolated habitats at the outer margin of the geographical range of the species, are characterized by small effective population size and accumulate throughout the genome several small to large-effect deleterious mutations due to genetic drift. The genes most affected by drift in the shortest-lived turquoise killifish populations are involved in the WNT signalling pathway, neurodegenerative disorders, cancer and the mTOR pathway. As the populations under stronger genetic drift are the shortest-lived ones, we propose that limited population size due to habitat fragmentation and repeated population bottlenecks, by causing the genome-wide accumulation of deleterious mutations, cumulatively contribute to the short adult lifespan in turquoise killifish populations.


Sign in / Sign up

Export Citation Format

Share Document