scholarly journals Electron shelving of a superconducting artificial atom

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nathanaël Cottet ◽  
Haonan Xiong ◽  
Long B. Nguyen ◽  
Yen-Hsiang Lin ◽  
Vladimir E. Manucharyan

AbstractInterfacing long-lived qubits with propagating photons is a fundamental challenge in quantum technology. Cavity and circuit quantum electrodynamics (cQED) architectures rely on an off-resonant cavity, which blocks the qubit emission and enables a quantum non-demolition (QND) dispersive readout. However, no such buffer mode is necessary for controlling a large class of three-level systems that combine a metastable qubit transition with a bright cycling transition, using the electron shelving effect. Here we demonstrate shelving of a circuit atom, fluxonium, placed inside a microwave waveguide. With no cavity modes in the setup, the qubit coherence time exceeds 50 μs, and the cycling transition’s radiative lifetime is under 100 ns. By detecting a homodyne fluorescence signal from the cycling transition, we implement a QND readout of the qubit and account for readout errors using a minimal optical pumping model. Our result establishes a resource-efficient (cavityless) alternative to cQED for controlling superconducting qubits.

Science ◽  
2021 ◽  
Vol 373 (6553) ◽  
pp. 430-433 ◽  
Author(s):  
M. Hays ◽  
V. Fatemi ◽  
D. Bouman ◽  
J. Cerrillo ◽  
S. Diamond ◽  
...  

Two promising architectures for solid-state quantum information processing are based on electron spins electrostatically confined in semiconductor quantum dots and the collective electrodynamic modes of superconducting circuits. Superconducting electrodynamic qubits involve macroscopic numbers of electrons and offer the advantage of larger coupling, whereas semiconductor spin qubits involve individual electrons trapped in microscopic volumes but are more difficult to link. We combined beneficial aspects of both platforms in the Andreev spin qubit: the spin degree of freedom of an electronic quasiparticle trapped in the supercurrent-carrying Andreev levels of a Josephson semiconductor nanowire. We performed coherent spin manipulation by combining single-shot circuit–quantum-electrodynamics readout and spin-flipping Raman transitions and found a spin-flip time TS = 17 microseconds and a spin coherence time T2E = 52 nanoseconds. These results herald a regime of supercurrent-mediated coherent spin-photon coupling at the single-quantum level.


2010 ◽  
Vol 81 (14) ◽  
Author(s):  
Georg M. Reuther ◽  
David Zueco ◽  
Frank Deppe ◽  
Elisabeth Hoffmann ◽  
Edwin P. Menzel ◽  
...  

2015 ◽  
Vol 40 (23) ◽  
pp. 5602 ◽  
Author(s):  
Tong Liu ◽  
Shao-Jie Xiong ◽  
Xiao-Zhi Cao ◽  
Qi-Ping Su ◽  
Chui-Ping Yang

2021 ◽  
Vol 7 (21) ◽  
pp. eabe9492
Author(s):  
Paul Brookes ◽  
Giovanna Tancredi ◽  
Andrew D. Patterson ◽  
Joseph Rahamim ◽  
Martina Esposito ◽  
...  

Critical slowing down of the time it takes a system to reach equilibrium is a key signature of bistability in dissipative first-order phase transitions. Understanding and characterizing this process can shed light on the underlying many-body dynamics that occur close to such a transition. Here, we explore the rich quantum activation dynamics and the appearance of critical slowing down in an engineered superconducting quantum circuit. Specifically, we investigate the intermediate bistable regime of the generalized Jaynes-Cummings Hamiltonian (GJC), realized by a circuit quantum electrodynamics (cQED) system consisting of a transmon qubit coupled to a microwave cavity. We find a previously unidentified regime of quantum activation in which the critical slowing down reaches saturation and, by comparing our experimental results with a range of models, we shed light on the fundamental role played by the qubit in this regime.


2017 ◽  
Vol 119 (7) ◽  
Author(s):  
Moein Malekakhlagh ◽  
Alexandru Petrescu ◽  
Hakan E. Türeci

2014 ◽  
Vol 20 (1) ◽  
pp. 46-50
Author(s):  
赵英燕 ZHAO Ying-yan ◽  
高贵龙 GAO Gui-long ◽  
唐龙英 TANG Long-ying ◽  
姜年权 JIANG Nian-quan

Sign in / Sign up

Export Citation Format

Share Document