radiative lifetime
Recently Published Documents





2021 ◽  
Vol 75 (12) ◽  
Hans-Georg Weber

Abstract The theory of large extra compactified dimensions of space (ADD-model) predicts that gravity may become strong in a compactification space of the size of a molecule and may affect the vibrational motion of a molecule. In triatomic molecules like $$\hbox {NO}_{{2}}$$ NO 2 nuclear dynamics is strongly coupled to electronic dynamics at the intersection of electronic states (conical intersection). We discuss experimental results on $$\hbox {NO}_{{2}}$$ NO 2 which reveal that the collision-free molecule optically excited into a symmetric stretch vibration mode of an electronic state with conical intersection undergoes an irreversible non-radiative transition into an asymmetric stretch vibration mode in combination with a change of the electronic state. We suggest ascribing this irreversible non-radiative transition to a gravitational perturbation on the vibrational motion in $$\hbox {NO}_{{2}}$$ NO 2 . This gravitational perturbation deactivates the upper state of the optical transition. The width of the absorption line is given by the characteristic time of the gravitational perturbation and not by the radiative lifetime of the excited molecular state. Graphical abstract

2021 ◽  
Vol 12 (1) ◽  
Nathanaël Cottet ◽  
Haonan Xiong ◽  
Long B. Nguyen ◽  
Yen-Hsiang Lin ◽  
Vladimir E. Manucharyan

AbstractInterfacing long-lived qubits with propagating photons is a fundamental challenge in quantum technology. Cavity and circuit quantum electrodynamics (cQED) architectures rely on an off-resonant cavity, which blocks the qubit emission and enables a quantum non-demolition (QND) dispersive readout. However, no such buffer mode is necessary for controlling a large class of three-level systems that combine a metastable qubit transition with a bright cycling transition, using the electron shelving effect. Here we demonstrate shelving of a circuit atom, fluxonium, placed inside a microwave waveguide. With no cavity modes in the setup, the qubit coherence time exceeds 50 μs, and the cycling transition’s radiative lifetime is under 100 ns. By detecting a homodyne fluorescence signal from the cycling transition, we implement a QND readout of the qubit and account for readout errors using a minimal optical pumping model. Our result establishes a resource-efficient (cavityless) alternative to cQED for controlling superconducting qubits.

2021 ◽  
Vol 104 (16) ◽  
Sébastien Roux ◽  
Christophe Arnold ◽  
Fulvio Paleari ◽  
Lorenzo Sponza ◽  
Eli Janzen ◽  

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6270
Tristan Smołka ◽  
Katarzyna Posmyk ◽  
Maja Wasiluk ◽  
Paweł Wyborski ◽  
Michał Gawełczyk ◽  

We present an experimental study on the optical quality of InAs/InP quantum dots (QDs). Investigated structures have application relevance due to emission in the 3rd telecommunication window. The nanostructures are grown by ripening-assisted molecular beam epitaxy. This leads to their unique properties, i.e., low spatial density and in-plane shape symmetry. These are advantageous for non-classical light generation for quantum technologies applications. As a measure of the internal quantum efficiency, the discrepancy between calculated and experimentally determined photon extraction efficiency is used. The investigated nanostructures exhibit close to ideal emission efficiency proving their high structural quality. The thermal stability of emission is investigated by means of microphotoluminescence. This allows to determine the maximal operation temperature of the device and reveal the main emission quenching channels. Emission quenching is predominantly caused by the transition of holes and electrons to higher QD’s levels. Additionally, these carriers could further leave the confinement potential via the dense ladder of QD states. Single QD emission is observed up to temperatures of about 100 K, comparable to the best results obtained for epitaxial QDs in this spectral range. The fundamental limit for the emission rate is the excitation radiative lifetime, which spreads from below 0.5 to almost 1.9 ns (GHz operation) without any clear spectral dispersion. Furthermore, carrier dynamics is also determined using time-correlated single-photon counting.

Crystals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1155
Jin Zhang ◽  
Zengzhe Xi ◽  
Xinzhe Wang ◽  
Hao Feng ◽  
Wei Long ◽  

An Er3+/Sc3+ co-doped 0.68Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 ferroelectric single crystal was grown by high-temperature flux method. The remnant polarization Pr is 27.97 µC/cm2 and the coercive field Ec is 8.26 kV/cm for [100] oriented crystal. Green (524 and 551 nm) and red (654 nm) emission bands are generated at the 980 nm excitation, which corresponds to the 2H11/2→ 4I15/2, 4S3/2→ 4I15/2 and 4F9/2→ 4I15/2 transitions of Er3+, respectively. Judd–Ofelt theory has been applied to predict the spectroscopic characteristics of the as-grown crystals. The obtained J–O intensity parameters Ωt (t = 2, 4 and 6) are Ω2 = 0.76 × 10−20 cm2, Ω4 = 1.0 × 10−20 cm2, Ω6 = 0.55 × 10−20 cm2. Spectroscopic characteristics, including optical transition probabilities, branching ratio, and radiative lifetime of Er3+ in the crystal, are determined. The calculated radiative lifetimes of 4I13/2 and 4I11/2 energy levels are 2.82 ms and 2.61 ms, respectively. These investigations provide possibilities for the crystal Pb(Mg1/3Nb2/3)O3-0.32PbTiO3:Er3+/Sc3+ to be a new type of multifunctional crystal integrating electricity-luminescence.

2021 ◽  
Vol 119 (11) ◽  
pp. 113103
Xiaofan Wang ◽  
Keisuke Shinokita ◽  
Kazunari Matsuda

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4221
Andrei Racu ◽  
Marius Stef ◽  
Gabriel Buse ◽  
Irina Nicoara ◽  
Daniel Vizman

The influence of erbium ion concentration on the optical properties of BaF2:ErF3 crystals was investigated. Four ErF3 concentration (0.05, 0.08, 0.15 and 0.5 mol% ErF3)-doped BaF2 crystals were obtained using the Bridgman technique. Room temperature optical absorption in the 250–850 nm spectral range was measured, and the photoluminescence (PL) and decay times were also investigated. The Judd–Ofelt (JO) approximation was used, taking into account four absorption peaks (at 377, 519, 653 and 802 nm). The JO intensity parameters, Ωt (t = 2, 4, 6), were calculated. The influence of the ErF3 concentration on the JO parameters, branching ratio, radiative transition probability and radiative lifetime were studied. The obtained results were compared with measured values and with those reported in the literature. Under excitation at 380 nm, the well-known green (539 nm) and red (668 nm) emissions were obtained. The calculated and experimental radiative lifetimes were in millisecond range for green and red emissions. The intensity of the PL spectra varied with the Er3+ ion concentration. The emission intensity increased linearly or exponentially, depending on the ErF3 concentration. Under excitation at 290 nm, separate to the green and red emissions, a new UV emission band (at 321 nm) was obtained. Other research has not reported the UV emission or the influence of ErF3 concentration on emission behavior.

Sign in / Sign up

Export Citation Format

Share Document