scholarly journals Low-latency time-of-flight non-line-of-sight imaging at 5 frames per second

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ji Hyun Nam ◽  
Eric Brandt ◽  
Sebastian Bauer ◽  
Xiaochun Liu ◽  
Marco Renna ◽  
...  

AbstractNon-Line-Of-Sight (NLOS) imaging aims at recovering the 3D geometry of objects that are hidden from the direct line of sight. One major challenge with this technique is the weak available multibounce signal limiting scene size, capture speed, and reconstruction quality. To overcome this obstacle, we introduce a multipixel time-of-flight non-line-of-sight imaging method combining specifically designed Single Photon Avalanche Diode (SPAD) array detectors with a fast reconstruction algorithm that captures and reconstructs live low-latency videos of non-line-of-sight scenes with natural non-retroreflective objects. We develop a model of the signal-to-noise-ratio of non-line-of-sight imaging and use it to devise a method that reconstructs the scene such that signal-to-noise-ratio, motion blur, angular resolution, and depth resolution are all independent of scene depth suggesting that reconstruction of very large scenes may be possible.

1988 ◽  
Vol 132 ◽  
pp. 71-78
Author(s):  
J. P. Maillard

The multiplex properties of the Fourier Transform Spectrometer (FTS) can be considered as disadvantageous with modern detectors and large telescopes, the dominant noise source being no longer in most applications the detector noise. Nevertheless, a FTS offers a gain in information and other instrumental features remain: flexibility in choosing resolving power up to very high values, large throughput, essential in high–resolution spectroscopy with large telescopes, metrologic accuracy, automatic substraction of parasitic background. The signal–to–noise ratio in spectra can also be improved: by limiting the bandwidth with cold filters or even cold dispersers, by matching the instrument to low background foreoptics and high–image quality telescopes. The association with array detectors provides the solution for the FTS to regain its full multiplex advantage.


2021 ◽  
Vol 23 (1) ◽  
pp. 148-166
Author(s):  
Yu. Agalidi ◽  
O. Koshel

While research on destroyed relief marking of metal objects using the magneto-optical method, visualization of (invisible) fields of internal stress in the VIN plate area is performed and then a forensic analysis of obtained instrumental data is carried out (indirect organoleptic observation of the visualization results); thus, forensic analysis reliability of results directly depends on sensitivity of instruments and informativeness of instrumental data. The main quantitative characteristic in this case is probability of correct signal recognition  (contours of marking signs) against the background of noise (structural noise of investigated surface and the noise of the visualization method itself) determined by the signal-to-noise ratio. This article presents results of a comparative experimental assessment of signal-to-noise ratio and probability of correct signal recognition while restoringthe destroyed relief markings for two complexes of magneto-optical imaging – models of 2006 and 2018. This article purpose is a quantitative and qualitative comparative assessment of results of visualization of internal stresses in areas of completely removed relief marking of metal objects. The results of successful practical research obtained by forensic experts from different countries make it possible to assess effectiveness and prospects of using the magneto-optical imaging method. In a new modification of the magneto-optical complex: signal level is 4.35 dB higher (contrast of reconstructed marking signs); 2.71 dB lower noise level (surface relief/texture and magnetic copying noise);• probability of correct character recognition is P> 0.995 (increased by 14.9%). Technical improvements in implementation of magneto-optical visualization method made it possible to expand the range of materials for research objects(magnetic and electrically conductive materials were investigated). The high efficiency of method for restoring marking is illustrated by results of forensic examinations for materials with a low level of residual stresses (aluminum alloy, low-carbon steel) which  chemical etching method did not give results for. The use of new modification allows examining the rust layer, up to cases of corrosion to the entire depth of marks. Considering non-destructive nature of magneto-optical researches, possibility of their repeated repetition without losing  object properties, this method (in accordance with the order of application of types of studies) deserves more attention for application.


2018 ◽  
Vol 38 (5) ◽  
pp. 0511001
Author(s):  
刘成淼 Liu Chengmiao ◽  
李建欣 Li Jianxin ◽  
朱日宏 Zhu Rihong ◽  
崔向群 Cui Xiangqun

2017 ◽  
Vol 11 (10) ◽  
pp. 1495-1504 ◽  
Author(s):  
Shaodong Li ◽  
Wenfeng Chen ◽  
Weijian Liu ◽  
Jun Yang ◽  
Xiaoyan Ma

Sign in / Sign up

Export Citation Format

Share Document