scholarly journals Interferon-driven brain phenotype in a mouse model of RNaseT2 deficient leukoencephalopathy

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Matthias Kettwig ◽  
Katharina Ternka ◽  
Kristin Wendland ◽  
Dennis Manfred Krüger ◽  
Silvia Zampar ◽  
...  

AbstractInfantile-onset RNaseT2 deficient leukoencephalopathy is characterised by cystic brain lesions, multifocal white matter alterations, cerebral atrophy, and severe psychomotor impairment. The phenotype is similar to congenital cytomegalovirus brain infection and overlaps with type I interferonopathies, suggesting a role for innate immunity in its pathophysiology. To date, pathophysiological studies have been hindered by the lack of mouse models recapitulating the neuroinflammatory encephalopathy found in patients. In this study, we generated Rnaset2−/− mice using CRISPR/Cas9-mediated genome editing. Rnaset2−/− mice demonstrate upregulation of interferon-stimulated genes and concurrent IFNAR1-dependent neuroinflammation, with infiltration of CD8+ effector memory T cells and inflammatory monocytes into the grey and white matter. Single nuclei RNA sequencing reveals homeostatic dysfunctions in glial cells and neurons and provide important insights into the mechanisms of hippocampal-accentuated brain atrophy and cognitive impairment. The Rnaset2−/− mice may allow the study of CNS damage associated with RNaseT2 deficiency and may be used for the investigation of potential therapies.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Elena N. Judd ◽  
Alison R. Gilchrist ◽  
Nicholas R. Meyerson ◽  
Sara L. Sawyer

Abstract Background The Type I interferon response is an important first-line defense against viruses. In turn, viruses antagonize (i.e., degrade, mis-localize, etc.) many proteins in interferon pathways. Thus, hosts and viruses are locked in an evolutionary arms race for dominance of the Type I interferon pathway. As a result, many genes in interferon pathways have experienced positive natural selection in favor of new allelic forms that can better recognize viruses or escape viral antagonists. Here, we performed a holistic analysis of selective pressures acting on genes in the Type I interferon family. We initially hypothesized that the genes responsible for inducing the production of interferon would be antagonized more heavily by viruses than genes that are turned on as a result of interferon. Our logic was that viruses would have greater effect if they worked upstream of the production of interferon molecules because, once interferon is produced, hundreds of interferon-stimulated proteins would activate and the virus would need to counteract them one-by-one. Results We curated multiple sequence alignments of primate orthologs for 131 genes active in interferon production and signaling (herein, “induction” genes), 100 interferon-stimulated genes, and 100 randomly chosen genes. We analyzed each multiple sequence alignment for the signatures of recurrent positive selection. Counter to our hypothesis, we found the interferon-stimulated genes, and not interferon induction genes, are evolving significantly more rapidly than a random set of genes. Interferon induction genes evolve in a way that is indistinguishable from a matched set of random genes (22% and 18% of genes bear signatures of positive selection, respectively). In contrast, interferon-stimulated genes evolve differently, with 33% of genes evolving under positive selection and containing a significantly higher fraction of codons that have experienced selection for recurrent replacement of the encoded amino acid. Conclusion Viruses may antagonize individual products of the interferon response more often than trying to neutralize the system altogether.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 542.2-542
Author(s):  
A. Avdeeva ◽  
E. Tchetina ◽  
G. Markova ◽  
E. Nasonov

Background:Type I interferons (IFN-Is) are a group of molecules with pleiotropic effects on the immune system forming a crucial link between innate and adaptive immune responses. The type I interferon pathway has been implicated in the pathogenesis of a number of rheumatic diseases, including rheumatoid arthritis. IFN activity is usually quantified using expression of interferon-stimulated genes (ISGs) referred to as an IFN signature. Acellbia (BIOCAD) is the first Russian rituximab (RTX) biosimilar which was approved for medical use in rheumatoid arthritis (RA) patients in Russia and some CIS countries.Objectives:To evaluate the changes in expression of ISGs in patients (pts) with RA during RTX biosimilar therapyMethods:20 RA pts (18 woman, Me;IQR age 61.5(54-66.5) years, disease duration 39.5(20-84) months, mean DAS 28 5.6(4.9-6.8)) received two intravenous RTX biosimilar infusions (600 mg №2) in combination with DMARDs and glucocorticoids. Laboratory biomarkers were assessed at baseline and 24 weeks after the first infusion of RTX. 5 genes (IFI44L, MX1, IFIT 1, RSAD2, EPSTI1) were selected for evaluation of the “interferon signature” (Type I IFN gene signature – IFNGS). IFI44L and IFIT1 expression was undetectable, therefore the remaining three genes (MSX1, EPSTI1, RSAD2) were included into further analysis. IFNGS was calculated as the average expression values of the three selected genes. The control group included 20 age and gender matching healthy donors.Results:The baseline expression levels of MX1-11.48 (5.45-19.38), EPSTI1-12.83 (5.62-19.64), RSAD2-5.16 (2.73-10.4), and IFNGS-10.3 (5.18-17.12) in RA patients were significantly higher compared to healthy donors– 1,26 (0,73-1,6); 1,06 (0,81-1,48); 0,93 (0,72-1,19); 1,09 (0,92-1,42), (p<0.05, respectively). IFNGS was detected in 15 (75%) patients, and was not found in 5 (15%) patients. RTX induced reduction in disease activity, and the level of acute phase reactants (ESR, CRP) after 12 and 24 weeks of therapy, p<0.05 (fig.1). Increased RSAD 2 expression (p<0.05) and a trend to increasing IFNGS levels (p=0.06) were documented in the whole group, and also in patients with moderate treatment effects by week 24. Among patients with a good EULAR response to therapy, changes in expression were not significant (p> 0.05) (fig.1)Figure 1.Conclusion:Expression of IFN-stimulated genes was increased in RA patients compared to healthy donors. Increased RSAD2 and IFNGS expression was documented in patients with moderate effect of RTX therapy, therefore, these findings have important clinical relevance as predictors of RA clinical course which necessitates personified approach to treatment.Disclosure of Interests:None declared


Sign in / Sign up

Export Citation Format

Share Document