scholarly journals Application of a long short-term memory for deconvoluting conductance contributions at charged ferroelectric domain walls

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Theodor S. Holstad ◽  
Trygve M. Ræder ◽  
Donald M. Evans ◽  
Didirk R. Småbråten ◽  
Stephan Krohns ◽  
...  

Abstract Ferroelectric domain walls are promising quasi-2D structures that can be leveraged for miniaturization of electronics components and new mechanisms to control electronic signals at the nanoscale. Despite the significant progress in experiment and theory, however, most investigations on ferroelectric domain walls are still on a fundamental level, and reliable characterization of emergent transport phenomena remains a challenging task. Here, we apply a neural-network-based approach to regularize local I(V)-spectroscopy measurements and improve the information extraction, using data recorded at charged domain walls in hexagonal (Er0.99,Zr0.01)MnO3 as an instructive example. Using a sparse long short-term memory autoencoder, we disentangle competing conductivity signals both spatially and as a function of voltage, facilitating a less biased, unconstrained and more accurate analysis compared to a standard evaluation of conductance maps. The neural-network-based analysis allows us to isolate extrinsic signals that relate to the tip-sample contact and separating them from the intrinsic transport behavior associated with the ferroelectric domain walls in (Er0.99,Zr0.01)MnO3. Our work expands machine-learning-assisted scanning probe microscopy studies into the realm of local conductance measurements, improving the extraction of physical conduction mechanisms and separation of interfering current signals.

Author(s):  
Thang

In this research, we propose a method of human robot interactive intention prediction. The proposed algorithm makes use of a OpenPose library and a Long-short term memory deep learning neural network. The neural network observes the human posture in a time series, then predicts the human interactive intention. We train the deep neural network using dataset generated by us. The experimental results show that, our proposed method is able to predict the human robot interactive intention, providing 92% the accuracy on the testing set.


2021 ◽  
Author(s):  
Hayrettin Okut

The long short-term memory neural network (LSTM) is a type of recurrent neural network (RNN). During the training of RNN architecture, sequential information is used and travels through the neural network from input vector to the output neurons, while the error is calculated and propagated back through the network to update the network parameters. Information in these networks incorporates loops into the hidden layer. Loops allow information to flow multi-directionally so that the hidden state signifies past information held at a given time step. Consequently, the output is dependent on the previous predictions which are already known. However, RNNs have limited capacity to bridge more than a certain number of steps. Mainly this is due to the vanishing of gradients which causes the predictions to capture the short-term dependencies as information from earlier steps decays. As more layers in RNN containing activation functions are added, the gradient of the loss function approaches zero. The LSTM neural networks (LSTM-ANNs) enable learning long-term dependencies. LSTM introduces a memory unit and gate mechanism to enable capture of the long dependencies in a sequence. Therefore, LSTM networks can selectively remember or forget information and are capable of learn thousands timesteps by structures called cell states and three gates.


Author(s):  
Yedilkhan Amirgaliyev ◽  
Kuanyshbay Kuanyshbay ◽  
Aisultan Shoiynbek

This paper evaluates and compares the performances of three well-known optimization algorithms (Adagrad, Adam, Momentum) for faster training the neural network of CTC algorithm for speech recognition. For CTC algorithms recurrent neural network has been used, specifically Long-Short-Term memory. LSTM is effective and often used model. Data has been downloaded from VCTK corpus of Edinburgh University. The results of optimization algorithms have been evaluated by the Label error rate and CTC loss.


2020 ◽  
Vol 13 (1) ◽  
pp. 104
Author(s):  
Dana-Mihaela Petroșanu ◽  
Alexandru Pîrjan

The accurate forecasting of the hourly month-ahead electricity consumption represents a very important aspect for non-household electricity consumers and system operators, and at the same time represents a key factor in what regards energy efficiency and achieving sustainable economic, business, and management operations. In this context, we have devised, developed, and validated within the paper an hourly month ahead electricity consumption forecasting method. This method is based on a bidirectional long-short-term memory (BiLSTM) artificial neural network (ANN) enhanced with a multiple simultaneously decreasing delays approach coupled with function fitting neural networks (FITNETs). The developed method targets the hourly month-ahead total electricity consumption at the level of a commercial center-type consumer and for the hourly month ahead consumption of its refrigerator storage room. The developed approach offers excellent forecasting results, highlighted by the validation stage’s results along with the registered performance metrics, namely 0.0495 for the root mean square error (RMSE) performance metric for the total hourly month-ahead electricity consumption and 0.0284 for the refrigerator storage room. We aimed for and managed to attain an hourly month-ahead consumed electricity prediction without experiencing a significant drop in the forecasting accuracy that usually tends to occur after the first two weeks, therefore achieving a reliable method that satisfies the contractor’s needs, being able to enhance his/her activity from the economic, business, and management perspectives. Even if the devised, developed, and validated forecasting solution for the hourly consumption targets a commercial center-type consumer, based on its accuracy, this solution can also represent a useful tool for other non-household electricity consumers due to its generalization capability.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 411
Author(s):  
Yunkai Zhang ◽  
Yinghong Tian ◽  
Pingyi Wu ◽  
Dongfan Chen

The recognition of stereotyped action is one of the core diagnostic criteria of Autism Spectrum Disorder (ASD). However, it mainly relies on parent interviews and clinical observations, which lead to a long diagnosis cycle and prevents the ASD children from timely treatment. To speed up the recognition process of stereotyped actions, a method based on skeleton data and Long Short-Term Memory (LSTM) is proposed in this paper. In the first stage of our method, the OpenPose algorithm is used to obtain the initial skeleton data from the video of ASD children. Furthermore, four denoising methods are proposed to eliminate the noise of the initial skeleton data. In the second stage, we track multiple ASD children in the same scene by matching distance between current skeletons and previous skeletons. In the last stage, the neural network based on LSTM is proposed to classify the ASD children’s actions. The performed experiments show that our proposed method is effective for ASD children’s action recognition. Compared to the previous traditional schemes, our scheme has higher accuracy and is almost non-invasive for ASD children.


Sign in / Sign up

Export Citation Format

Share Document