Deep Learning for Subtyping and Prediction of Diseases: Long-Short Term Memory
The long short-term memory neural network (LSTM) is a type of recurrent neural network (RNN). During the training of RNN architecture, sequential information is used and travels through the neural network from input vector to the output neurons, while the error is calculated and propagated back through the network to update the network parameters. Information in these networks incorporates loops into the hidden layer. Loops allow information to flow multi-directionally so that the hidden state signifies past information held at a given time step. Consequently, the output is dependent on the previous predictions which are already known. However, RNNs have limited capacity to bridge more than a certain number of steps. Mainly this is due to the vanishing of gradients which causes the predictions to capture the short-term dependencies as information from earlier steps decays. As more layers in RNN containing activation functions are added, the gradient of the loss function approaches zero. The LSTM neural networks (LSTM-ANNs) enable learning long-term dependencies. LSTM introduces a memory unit and gate mechanism to enable capture of the long dependencies in a sequence. Therefore, LSTM networks can selectively remember or forget information and are capable of learn thousands timesteps by structures called cell states and three gates.