scholarly journals Deep Learning for Subtyping and Prediction of Diseases: Long-Short Term Memory

2021 ◽  
Author(s):  
Hayrettin Okut

The long short-term memory neural network (LSTM) is a type of recurrent neural network (RNN). During the training of RNN architecture, sequential information is used and travels through the neural network from input vector to the output neurons, while the error is calculated and propagated back through the network to update the network parameters. Information in these networks incorporates loops into the hidden layer. Loops allow information to flow multi-directionally so that the hidden state signifies past information held at a given time step. Consequently, the output is dependent on the previous predictions which are already known. However, RNNs have limited capacity to bridge more than a certain number of steps. Mainly this is due to the vanishing of gradients which causes the predictions to capture the short-term dependencies as information from earlier steps decays. As more layers in RNN containing activation functions are added, the gradient of the loss function approaches zero. The LSTM neural networks (LSTM-ANNs) enable learning long-term dependencies. LSTM introduces a memory unit and gate mechanism to enable capture of the long dependencies in a sequence. Therefore, LSTM networks can selectively remember or forget information and are capable of learn thousands timesteps by structures called cell states and three gates.

2018 ◽  
Vol 7 (4.15) ◽  
pp. 25 ◽  
Author(s):  
Said Jadid Abdulkadir ◽  
Hitham Alhussian ◽  
Muhammad Nazmi ◽  
Asim A Elsheikh

Forecasting time-series data are imperative especially when planning is required through modelling using uncertain knowledge of future events. Recurrent neural network models have been applied in the industry and outperform standard artificial neural networks in forecasting, but fail in long term time-series forecasting due to the vanishing gradient problem. This study offers a robust solution that can be implemented for long-term forecasting using a special architecture of recurrent neural network known as Long Short Term Memory (LSTM) model to overcome the vanishing gradient problem. LSTM is specially designed to avoid the long-term dependency problem as their default behavior. Empirical analysis is performed using quantitative forecasting metrics and comparative model performance on the forecasted outputs. An evaluation analysis is performed to validate that the LSTM model provides better forecasted outputs on Standard & Poor’s 500 Index (S&P 500) in terms of error metrics as compared to other forecasting models.  


Author(s):  
Thang

In this research, we propose a method of human robot interactive intention prediction. The proposed algorithm makes use of a OpenPose library and a Long-short term memory deep learning neural network. The neural network observes the human posture in a time series, then predicts the human interactive intention. We train the deep neural network using dataset generated by us. The experimental results show that, our proposed method is able to predict the human robot interactive intention, providing 92% the accuracy on the testing set.


2021 ◽  
Vol 248 ◽  
pp. 01017
Author(s):  
Eugene Yu. Shchetinin ◽  
Leonid Sevastianov

Computer paralinguistic analysis is widely used in security systems, biometric research, call centers and banks. Paralinguistic models estimate different physical properties of voice, such as pitch, intensity, formants and harmonics to classify emotions. The main goal is to find such features that would be robust to outliers and will retain variety of human voice properties at the same time. Moreover, the model used must be able to estimate features on a time scale for an effective analysis of voice variability. In this paper a paralinguistic model based on Bidirectional Long Short-Term Memory (BLSTM) neural network is described, which was trained for vocal-based emotion recognition. The main advantage of this network architecture is that each module of the network consists of several interconnected layers, providing the ability to recognize flexible long-term dependencies in data, which is important in context of vocal analysis. We explain the architecture of a bidirectional neural network model, its main advantages over regular neural networks and compare experimental results of BLSTM network with other models.


Author(s):  
Yedilkhan Amirgaliyev ◽  
Kuanyshbay Kuanyshbay ◽  
Aisultan Shoiynbek

This paper evaluates and compares the performances of three well-known optimization algorithms (Adagrad, Adam, Momentum) for faster training the neural network of CTC algorithm for speech recognition. For CTC algorithms recurrent neural network has been used, specifically Long-Short-Term memory. LSTM is effective and often used model. Data has been downloaded from VCTK corpus of Edinburgh University. The results of optimization algorithms have been evaluated by the Label error rate and CTC loss.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Theodor S. Holstad ◽  
Trygve M. Ræder ◽  
Donald M. Evans ◽  
Didirk R. Småbråten ◽  
Stephan Krohns ◽  
...  

Abstract Ferroelectric domain walls are promising quasi-2D structures that can be leveraged for miniaturization of electronics components and new mechanisms to control electronic signals at the nanoscale. Despite the significant progress in experiment and theory, however, most investigations on ferroelectric domain walls are still on a fundamental level, and reliable characterization of emergent transport phenomena remains a challenging task. Here, we apply a neural-network-based approach to regularize local I(V)-spectroscopy measurements and improve the information extraction, using data recorded at charged domain walls in hexagonal (Er0.99,Zr0.01)MnO3 as an instructive example. Using a sparse long short-term memory autoencoder, we disentangle competing conductivity signals both spatially and as a function of voltage, facilitating a less biased, unconstrained and more accurate analysis compared to a standard evaluation of conductance maps. The neural-network-based analysis allows us to isolate extrinsic signals that relate to the tip-sample contact and separating them from the intrinsic transport behavior associated with the ferroelectric domain walls in (Er0.99,Zr0.01)MnO3. Our work expands machine-learning-assisted scanning probe microscopy studies into the realm of local conductance measurements, improving the extraction of physical conduction mechanisms and separation of interfering current signals.


2018 ◽  
Vol 1 (1) ◽  
pp. 43-52
Author(s):  
Putu Sugiartawan ◽  
Agus Aan Jiwa Permana ◽  
Paholo Iman Prakoso

Bali is one of the favorite tourist attractions in Indonesia, where the number of foreign tourists visiting Bali is around 4 million over 2015 (Dispar Bali). The number of tourists visiting is spread in various regions and tourist attractions that are located in Bali. Although tourist visits to Bali can be said to be large, the visit was not evenly distributed, there were significant fluctuations in tourist visits. Forecasting or forecasting techniques can find out the pattern of tourist visits. Forecasting technique aims to predict the previous data pattern so that the next data pattern can be known. In this study using the technique of recurrent neural network in predicting the level of tourist visits. One of the techniques for a recurrent neural network (RNN) used in this study is Long Short-Term Memory (LSTM). This model is better than a simple RNN model. In this study predicting the level of tourist visits using the LSTM algorithm, the data used is data on tourist visits to one of the attractions in Bali. The results obtained using the LSTM model amounted to 15,962. The measured value is an error value, with the MAPE technique. The LSTM architecture used consists of 16 units of neuron units in the hidden layer, a learning rate of 0.01, windows size of 3, and the number of hidden layers is 1.


Sign in / Sign up

Export Citation Format

Share Document