scholarly journals Rewritable ferroelectric vortex pairs in BiFeO3

2017 ◽  
Vol 2 (1) ◽  
Author(s):  
Yang Li ◽  
Yaming Jin ◽  
Xiaomei Lu ◽  
Jan-Chi Yang ◽  
Ying-Hao Chu ◽  
...  
2003 ◽  
Vol 15 (7) ◽  
pp. 1861-1874 ◽  
Author(s):  
Denis Sipp ◽  
Laurent Jacquin
Keyword(s):  

Author(s):  
C. R. Hedlund ◽  
P. M. Ligrani ◽  
H.-K. Moon ◽  
B. Glezer

Heat transfer and fluid mechanics results are given for a swirl chamber whose geometry models an internal passage used to cool the leading edge of a turbine blade. The Reynolds numbers investigated, based on inlet duct characteristics, include values which are the same as in the application (18000–19400). The ratio of absolute air temperature between the inlet and wall of the swirl chamber ranges from 0.62 to 0.86 for the heat transfer measurements. Spatial variations of surface Nusselt numbers along swirl chamber surfaces are measured using infrared thermography in conjunction with thermocouples, energy balances, digital image processing, and in situ calibration procedures. The structure and streamwise development of arrays of Görtler vortex pairs, which develop along concave surfaces, are apparent from flow visualizations. Overall swirl chamber structure is also described from time-averaged surveys of the circumferential component of velocity, total pressure, static pressure, and the circumferential component of vorticity. Important variations of surface Nusselt numbers and time-averaged flow characteristics are present due to arrays of Görtler vortex pairs, especially near each of the two inlets, where Nusselt numbers are highest. Nusselt numbers then decrease and become more spatially uniform along the interior surface of the chamber as the flows advect away from each inlet.


2014 ◽  
Vol 755 ◽  
pp. 50-61 ◽  
Author(s):  
Luca Zannetti ◽  
Alexandre Gourjii

AbstractThe two-dimensional inviscid incompressible steady flow past an inclined flat plate is considered. A locus of asymmetric equilibrium configurations for vortex pairs is detected. It is shown that the flat geometry has peculiar properties compared to other geometries: (i) in order to satisfy the Kutta condition at both edges, which ensures flow regularity, the total circulation and the force acting on the plate must be zero; and (ii) the Kutta condition and the free vortex equilibrium conditions are not independent of each other. The non-existence of symmetric equilibrium configurations for an orthogonal plate is extended to more general asymmetric flows.


2017 ◽  
Vol 828 ◽  
pp. 353-373 ◽  
Author(s):  
Jie Zhang ◽  
Ming-Jiu Ni

It has been demonstrated by many experiments carried out over the last 60 years that in certain liquids a single millimetre-sized bubble will rise within an unstable path, which is sometimes observed to transit from zigzag to spiral. After performing several groups of direct numerical simulations, the present work gives a theoretical explanation to reveal the physical mechanism causing the transition, and the results are presented in two parts. In the first part, in which a freely rising bubble is simulated, equal-strength vortex pairs are observed to shed twice during a period of the pure zigzag path, and this type of motion is triggered by the amounts of streamwise vorticities accumulated on the bubble interface, when a critical value is reached. However, when the balance between the counter-rotating vortices is broken, an angular velocity is induced between the asymmetric vortex pairs, driving the bubble to rise in an opposite spiral path. Therefore, although there is no preference of the spiral direction as observed in experiments, it is actually determined by the sign of the stronger vortex thread. In the second part, external vertical magnetic fields are imposed onto the spirally rising bubble in order to further confirm the relations between the vortex structures and the unstable path patterns. As shown in our previous studies (Zhang & Ni, Phys. Fluids, vol. 26 (10), 2014, 102102), the strength of the double-threaded vortex pairs, as well as the imbalance between them, will be weakened under magnetic fields. Therefore, as the vortex pairs become more symmetric, the rotating radius of the spirally rising bubble is observed to decrease. We try to answer the question, put forward by Shew et al. (2005, Preprint, ENS, Lyon), ‘what caused the bubble to transit from zigzag to spiral naturally?’


Fractals ◽  
1995 ◽  
Vol 03 (02) ◽  
pp. 403-404
Author(s):  
Á. Péntek ◽  
T. Tél ◽  
Z. Toroczkai
Keyword(s):  

2010 ◽  
Vol 239 (18) ◽  
pp. 1789-1797 ◽  
Author(s):  
Jean-Régis Angilella
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document