scholarly journals Firearms-related skeletal muscle trauma: pathophysiology and novel approaches for regeneration

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Anselmo Moriscot ◽  
Elen H. Miyabara ◽  
Bruno Langeani ◽  
Antonio Belli ◽  
Stuart Egginton ◽  
...  

AbstractOne major cause of traumatic injury is firearm-related wounds (i.e., ballistic trauma), common in both civilian and military populations, which is increasing in prevalence and has serious long-term health and socioeconomic consequences worldwide. Common primary injuries of ballistic trauma include soft-tissue damage and loss, haemorrhage, bone fracture, and pain. The majority of injuries are of musculoskeletal origin and located in the extremities, such that skeletal muscle offers a major therapeutic target to aid recovery and return to normal daily activities. However, the underlying pathophysiology of skeletal muscle ballistic trauma remains poorly understood, with limited evidence-based treatment options. As such, this review will address the topic of firearm-related skeletal muscle injury and regeneration. We first introduce trauma ballistics and the immediate injury of skeletal muscle, followed by detailed coverage of the underlying biological mechanisms involved in regulating skeletal muscle dysfunction following injury, with a specific focus on the processes of muscle regeneration, muscle wasting and vascular impairments. Finally, we evaluate novel approaches for minimising muscle damage and enhancing muscle regeneration after ballistic trauma, which may have important relevance for primary care in victims of violence.

2019 ◽  
Author(s):  
Konstantinos Papanikolaou ◽  
Dimitrios Draganidis ◽  
Athanasios Chatzinikolaou ◽  
Vassiliki C. Laschou ◽  
Kalliopi Georgakouli ◽  
...  

Abstract Background Muscle satellite cells (SCs) are crucial for muscle regeneration following muscle trauma. Acute skeletal muscle damage results in inflammation and production of reactive oxygen species (ROS) which may be implicated in SCs activation. Protection of these cells from oxidative damage is essential to ensure sufficient muscle regeneration. The aim of this study is to determine whether SCs activity under conditions of aseptic skeletal muscle trauma induced by exercise is redox-dependent. Methods/design Based on their SCs content in their vastus lateralis skeletal muscle, participants will be classified as either high or low respondents. In a randomized, double-blind, crossover, repeated measures design, participants will then receive either Placebo or N-acetylcysteine (alters redox potential in muscle) during a preliminary 7-day loading phase, and for 8 consecutive days following a single bout of intense muscle-damaging exercise. In both trials, blood samples and muscle biopsies will be collected, and muscle performance and soreness will be measured at baseline, pre-exercise, 2- and 8-days post-exercise. Biological samples will be analyzed for redox status and SCs activity. Between trials, a 4-week washout period will be implemented. Discussion This study is designed to investigate the impact of redox status on SCs mobilization and thus skeletal muscle potential for regeneration under conditions of aseptic inflammation induced by exercise. Findings of this trial will provide insight into i) molecular pathways involved in SCs recruitment and muscle healing under conditions of aseptic skeletal muscle trauma present in numerous catabolic conditions and ii) if skeletal muscle’s potential for regeneration depends on its basal SCs content.


2019 ◽  
Author(s):  
Konstantinos Papanikolaou ◽  
Dimitrios Draganidis ◽  
Athanasios Chatzinikolaou ◽  
Vassiliki C. Laschou ◽  
Kalliopi Georgakouli ◽  
...  

Abstract Background Muscle satellite cells (SCs) are crucial for muscle regeneration following muscle trauma. Acute skeletal muscle damage results in inflammation and production of reactive oxygen species (ROS) which may be implicated in SCs activation. Protection of these cells from oxidative damage is essential to ensure sufficient muscle regeneration. The aim of this study is to determine whether SCs activity under conditions of aseptic skeletal muscle trauma induced by exercise is redox-dependent. Methods/design Based on their SCs content in their vastus lateralis skeletal muscle, participants will be classified as either high or low respondents. In a randomized, double-blind, crossover, repeated measures design, participants will then receive either Placebo or N-acetylcysteine (alters redox potential in muscle) during a preliminary 7-day loading phase, and for 8 consecutive days following a single bout of intense muscle-damaging exercise. In both trials, blood samples and muscle biopsies will be collected, and muscle performance and soreness will be measured at baseline, pre-exercise, 2- and 8-days post-exercise. Biological samples will be analyzed for redox status and SCs activity. Between trials, a 4-week washout period will be implemented. Discussion This study is designed to investigate the impact of redox status on SCs mobilization and thus skeletal muscle potential for regeneration under conditions of aseptic inflammation induced by exercise. Findings of this trial will provide insight into i) molecular pathways involved in SCs recruitment and muscle healing under conditions of aseptic skeletal muscle trauma present in numerous catabolic conditions and ii) if skeletal muscle’s potential for regeneration depends on its basal SCs content.


2012 ◽  
Vol 6 (1) ◽  
pp. 352-356 ◽  
Author(s):  
Philipp von Roth ◽  
Georg N Duda ◽  
Piotr Radojewski ◽  
Bernd Preininger ◽  
Kristin Strohschein ◽  
...  

Introduction: Skeletal muscle trauma leads to severe functional deficits, which cannot be addressed by current treatment options. Our group could show the efficacy of local transplantation of mesenchymal stroma cells (MSCs) for the treatment of injured muscles. While local application of MSCs has proven to be effective, we hypothesized that a selective intra-arterial transplantation would lead to a better distribution of the cells and so improved physiological recovery of muscle function. Materials and Methodology: 18 female Sprague Dawley rats received an open crush trauma of the left soleus muscle. Autologous MSC were transduced using dsCOP-GFP and 2.5 x 106cells were transplanted into the femoral artery of 9 animals one week after trauma. Control animals (n=9) received a saline injection. Cell tracking, analysis of tissue fibrosis and muscle force measurements were performed after 3 weeks. Results: Systemic MSC-therapy improved the muscle force significantly compared to control (fast twitch: 82.4%, tetany: 61.6%, p = 0.02). The histological analysis showed no differences in the quantity of fibrotic tissue. Histological examination revealed no cells in the traumatized muscle tissue 21 days after transplantation. Conclusions: The present study demonstrated an effect of systemically administered MSCs in the treatment of skeletal muscle injuries. For possible future therapeutic approaches a systemic application of MSCs seems to present an alternative to a local administration. Such systemic treatment would be preferable since it allows functional improvement and possible cellular concentration at injury sites that are not easily accessible


Author(s):  
Francisco Hernandez-Torres ◽  
Lara Rodriguez-Outeiriño ◽  
Lidia Matias-Valiente ◽  
Estefania Lozano-Velasco ◽  
Diego Franco ◽  
...  

Skeletal muscle represents between 30 and 38% of the human body mass. Both the maintenance and repair of adult muscle tissue are directed by satellite cells (SCs). SCs are located beneath the basal lamina of the skeletal muscle myofiber. They are quiescent for most of their life but, in response to physiological stimuli or muscle trauma, they activate, proliferate, and enter the myogenic program via generating myogenic progenitors (myoblasts) that fuse to existing myofibers or de novo myofibers. MicroRNAs (miRNAs or miRs) play a critical role in regulating muscle regeneration and stem cell behavior. In this chapter, we review the pivotal role in the regulation of SC quiescence, activation, and differentiation in the context of muscular dystrophies.


2019 ◽  
Author(s):  
Konstantinos Papanikolaou ◽  
Dimitrios Draganidis ◽  
Athanasios Chatzinikolaou ◽  
Vassiliki C. Laschou ◽  
Kalliopi Georgakouli ◽  
...  

Abstract Background Muscle satellite cells (SCs) are crucial for muscle regeneration following muscle trauma. Acute skeletal muscle damage results in inflammation and production of reactive oxygen species (ROS) which may be implicated in SCs activation. Protection of these cells from oxidative damage is essential to ensure sufficient muscle regeneration. The aim of this study is to determine whether SCs activity under conditions of aseptic skeletal muscle trauma induced by exercise is redox-dependent. Methods/design Based on their SCs content in their vastus lateralis skeletal muscle, participants will be classified as either high or low respondents. In a randomized, double-blind, crossover, repeated measures design, participants will then receive either Placebo or N-acetylcysteine (alters redox potential in muscle) during a preliminary 7-day loading phase, and for 8 consecutive days following a single bout of intense muscle-damaging exercise. In both trials, blood samples and muscle biopsies will be collected, and muscle performance and soreness will be measured at baseline, pre-exercise, 2- and 8-days post-exercise. Biological samples will be analyzed for redox status and SCs activity. Between trials, a 4-week washout period will be implemented. Discussion This study is designed to investigate the impact of redox status on SCs mobilization and thus skeletal muscle potential for regeneration under conditions of aseptic inflammation induced by exercise. Findings of this trial will provide insight into i) molecular pathways involved in SCs recruitment and muscle healing under conditions of aseptic skeletal muscle trauma present in numerous catabolic conditions and ii) if skeletal muscle’s potential for regeneration depends on its basal SCs content.


1999 ◽  
Vol 277 (2) ◽  
pp. C320-C329 ◽  
Author(s):  
Deepa Thaloor ◽  
Kristy J. Miller ◽  
Jonathan Gephart ◽  
Patrick O. Mitchell ◽  
Grace K. Pavlath

Skeletal muscle is often the site of tissue injury due to trauma, disease, developmental defects or surgery. Yet, to date, no effective treatment is available to stimulate the repair of skeletal muscle. We show that the kinetics and extent of muscle regeneration in vivo after trauma are greatly enhanced following systemic administration of curcumin, a pharmacological inhibitor of the transcription factor NF-κB. Biochemical and histological analyses indicate an effect of curcumin after only 4 days of daily intraperitoneal injection compared with controls that require >2 wk to restore normal tissue architecture. Curcumin can act directly on cultured muscle precursor cells to stimulate both cell proliferation and differentiation under appropriate conditions. Other pharmacological and genetic inhibitors of NF-κB also stimulate muscle differentiation in vitro. Inhibition of NF-κB-mediated transcription was confirmed using reporter gene assays. We conclude that NF-κB exerts a role in regulating myogenesis and that modulation of NF-κB activity within muscle tissue is beneficial for muscle repair. The striking effects of curcumin on myogenesis suggest therapeutic applications for treating muscle injuries.


2019 ◽  
Author(s):  
Konstantinos Papanikolaou ◽  
Athanasios Z. Jamurtas ◽  
Dimitrios Draganidis ◽  
Athanasios Chatzinikolaou ◽  
Vassiliki C. Laschou ◽  
...  

Abstract Background: Muscle satellite cells (SCs) are crucial for muscle regeneration following muscle trauma. Acute skeletal muscle damage results in inflammation and production of reactive oxygen species (ROS) which may be implicated in SCs activation. Protection of these cells from oxidative damage is essential to ensure sufficient muscle regeneration. The aim of this study is to determine whether SCs activity under conditions of aseptic skeletal muscle trauma induced by exercise is redox-dependent. Methods: Based on their SCs content in their vastus lateralis skeletal muscle, participants will be classified as either high or low respondents. In a randomized, double-blind, crossover, repeated measures design, participants will then receive either Placebo or N-acetylcysteine (alters redox potential in muscle) during a preliminary 7-day loading phase, and for 8 consecutive days following a single bout of intense muscle-damaging exercise. In both trials, blood samples and muscle biopsies will be collected, and muscle performance and soreness will be measured at baseline, pre-exercise, 2- and 8-days post-exercise. Biological samples will be analyzed for redox status and SCs activity. Between trials, a 4-week washout period will be implemented. Discussion: This study is designed to investigate the impact of redox status on SCs mobilization and thus skeletal muscle potential for regeneration under conditions of aseptic inflammation induced by exercise. Findings of this trial will provide insight into i) molecular pathways involved in SCs recruitment and muscle healing under conditions of aseptic skeletal muscle trauma present in numerous catabolic conditions and ii) if skeletal muscle’s potential for regeneration depends on its basal SCs content. Trial registration: ClinicalTrials.gov, NCT03711838; Registered on 10/19/2018. Keywords: Muscle stem cells, cell signaling, antioxidants, redox potential, tissue regeneration.


2014 ◽  
Vol 2014 ◽  
pp. 1-21 ◽  
Author(s):  
Laura Cristina Ceafalan ◽  
Bogdan Ovidiu Popescu ◽  
Mihail Eugen Hinescu

Skeletal muscle, a tissue endowed with remarkable endogenous regeneration potential, is still under focused experimental investigation mainly due to treatment potential for muscle trauma and muscular dystrophies. Resident satellite cells with stem cell features were enthusiastically described quite a long time ago, but activation of these cells is not yet controlled by any medical interventions. However, after thorough reports of their existence, survival, activation, and differentiation there are still many questions to be answered regarding the intimate mechanism of tissue regeneration. This review delivers an up-to-date inventory of the main known key players in skeletal muscle repair, revealed by various models of tissue injuries in mechanical trauma, toxic lesions, and muscular dystrophy. A better understanding of the spatial and temporal relationships between various cell populations, with different physical or paracrine interactions and phenotype changes induced by local or systemic signalling, might lead to a more efficient approach for future therapies.


Sign in / Sign up

Export Citation Format

Share Document