scholarly journals A critical review on nanomaterials membrane bioreactor (NMs-MBR) for wastewater treatment

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Md. Nahid Pervez ◽  
Malini Balakrishnan ◽  
Shadi Wajih Hasan ◽  
Kwang-Ho Choo ◽  
Yaping Zhao ◽  
...  

Abstract The concept of nanomaterials membranes (NMs) promises to be a sustainable route to improve the membrane characteristics and enhance the performance of membrane bioreactors (MBRs) treating wastewater. This paper provided a critical review of recent studies on the use of membranes incorporating nanomaterials in membrane bioreactor (NMs-MBR) applications for wastewater treatment. Novel types of nanomaterials membranes were identified and discussed based on their structural morphologies. For each type, their design and fabrication, advances and potentialities were presented. The performance of NMs-MBR system has been summarized in terms of removal efficiencies of common pollutants and membrane fouling. The review also highlighted the sustainability and cost viability aspects of NMs-MBR technology that can enhance their widespread use in wastewater treatment applications.

2006 ◽  
Vol 53 (6) ◽  
pp. 7-13 ◽  
Author(s):  
H.Y. Ng ◽  
T.W. Tan ◽  
S.L. Ong ◽  
C.A. Toh ◽  
Z.P. Loo

In this study, four similar bench-scale submerged Anoxic/Oxic Membrane Bioreactors (MBR) were used simultaneously to investigate the effects of solids retention time (SRT) on organic and nitrogen removal in MBR for treating domestic wastewater. COD removal efficiencies in all reactors were consistently above 94% under steady state conditions. Complete conversion of NH4+-N to NO3--N was readily achieved over a feed NH4+-N concentration range of 30 to 50 mg/L. It was also observed that SRT did not significantly affect the nitrification in the MBR systems investigated. The average denitrification efficiencies for the 3, 5, 10 and 20 days SRT operations were 43.9, 32.6, 47.5 and 66.5%, respectively. In general, the average effluent nitrogen concentrations, which were mainly nitrate, were about 22.2, 27.6, 21.7 and 13.9 mg/L for the 3, 5, 10 and 20 days SRT systems, respectively. The rate of membrane fouling at 3 days SRT operation was more rapid than that observed at 5 days SRT. No fouling was noted in the 10 days and 20 days SRT systems during the entire period of study.


2020 ◽  
Vol 194 ◽  
pp. 04026
Author(s):  
Xinmeng Jiao ◽  
Kang Xie ◽  
Liping Qiu

Membrane bioreactor (MBR) is a kind of reputable and prospective technology for wastewater treatment and reformation applications. However, membrane fouling caused by the formation of biofilm on the membrane surface, especially biofouling, is a major obstacle that limits the energy-saving operation and maintenance of the membrane bioreactor (MBR). Microbial communication (known as Quorum Sensing (QS)) is the cause of this fouling phenomenon. A new strategy called Quorum Quenching (QQ) seems to have been successfully used for biological pollution control in wastewater treatment MBR. This review summarizes the latest findings regarding membrane fouling, QS mechanisms and QQ applications. We discussed the opportunities for further practical application of self-cleaning engineering QQ bacteria in MBR.


2019 ◽  
Vol 5 (6) ◽  
pp. 1145-1156 ◽  
Author(s):  
Amit Dan Grossman ◽  
Yang Yang ◽  
Uri Yogev ◽  
Daniela Calero Camarena ◽  
Gideon Oron ◽  
...  

One of the main challenges in the realization of anaerobic membrane bioreactors (AnMBRs) for wastewater treatment is reducing membrane fouling.


2020 ◽  
Vol 6 (10) ◽  
pp. 2641-2663
Author(s):  
Yisong Hu ◽  
Hui Cheng ◽  
Jiayuan Ji ◽  
Yu-You Li

Among the various anaerobic digestion technologies developed for wastewater treatment and resource recovery, the anaerobic membrane bioreactor (AnMBR) stands out as a viable alternative to traditional processes.


2020 ◽  
Vol 6 (5) ◽  
pp. 1230-1243 ◽  
Author(s):  
Michael Lim ◽  
Dominique Patureau ◽  
Marc Heran ◽  
Geoffroy Lesage ◽  
Jeonghwan Kim

The anaerobic membrane bioreactor (AnMBR) is a promising technology for achieving an energy-saving or even energy-positive wastewater treatment process as it produces high effluent quality and renewable energy in the form of methane.


2017 ◽  
Vol 76 (7) ◽  
pp. 1816-1826 ◽  
Author(s):  
Luong N. Nguyen ◽  
Faisal I. Hai ◽  
James A. McDonald ◽  
Stuart J. Khan ◽  
William E. Price ◽  
...  

This study demonstrates continuous enantiomeric inversion and further biotransformation of chiral profens including ibuprofen, naproxen and ketoprofen by an enzymatic membrane bioreactor (EMBR) dosed with laccase. The EMBR showed non-enantioselective transformations, with high and consistent transformation of both (R)- and (S)-ibuprofen (93 ± 6%, n= 10), but lower removals of both enantiomers of naproxen (46 ± 16%, n= 10) and ketoprofen (48 ± 17%, n= 10). Enantiomeric analysis revealed a bidirectional but uneven inversion of the profens, for example 14% inversion of (R)- to (S)- compared to 4% from (S)- to (R)-naproxen. With redox-mediator addition, the enzymatic chiral inversion of both (R)- and (S)-profens remained unchanged, although the overall conversion became enantioselective; except for (S)-naproxen, the addition of redox mediator promoted the degradation of (R)-profens only.


2014 ◽  
Vol 26 (11) ◽  
pp. 3246-3248
Author(s):  
Hongxiang Chai ◽  
Luwei Guo ◽  
Yinghua Wei ◽  
Jun Du ◽  
Jian Zhou ◽  
...  

2014 ◽  
Author(s):  
◽  
Shashikanth Gajaraj

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Much attention has been drawn by bioelectrochemical systems (BES) in the past years for wastewater treatment, due to its potential for enhanced wastewater treatment and resource recovery with added advantages in terms of energy generation, environmental footprint, operating stability and economics. This dissertation focuses on the potential to improve treatment efficiency of different wastewater components when assisted by BES. Modified Ludzack-Ettinger (MLE) process and membrane bioreactor (MBR) process assisted by microbial fuel cells (MFC) showed improved the nitrate-nitrogen removal efficiencies by upto 31% and 20% respectively, and reduced sludge produced by 11% and 6% respectively over the control reactors. While the unique design of the cathode significantly reduced physical membrane fouling, all other bioreactor performance was unaffected. Microbial electrolysis cell (MEC) assisted Cr[VI] reduction was faster in 60 days as compared to 69 days with MFC assisted systems and 85 days with the control. The total Cr removal efficiencies in the control system and the MFC or MEC-assisted systems were 20%, 55%, and 65%, respectively, demonstrating the ability of BES in assisting wastewater remediation process. Finally, MECs incorporated into anaerobic digestion resulted in increased production of methane of 9.4 % or 8.5% with both glucose and activated sludge respectively as the substrate. The integration of MEC had no impact on acetoclastic methanogens involved in anaerobic digestion, but significantly increased the populations of hydrogenotrophic methanogens, especially Methanobacteriales. In conclusion, the integration of BES with conventional wastewater treatment and sludge digestion process enhanced the removal of organic matter, nitrate and toxic metals while supporting healthy microbial consortia.


Sign in / Sign up

Export Citation Format

Share Document