scholarly journals A versatile living polymerization method for aromatic amides

2021 ◽  
Author(s):  
Subhajit Pal ◽  
Dinh Phuong Trinh Nguyen ◽  
Angélique Molliet ◽  
Mahshid Alizadeh ◽  
Aurélien Crochet ◽  
...  
2018 ◽  
Vol 39 (20) ◽  
pp. 1800479 ◽  
Author(s):  
Xiaofeng Guo ◽  
Bonnie Choi ◽  
Anchao Feng ◽  
San H. Thang

2014 ◽  
Vol 8 (1) ◽  
pp. 1457-1463
Author(s):  
Salah Abdulla Hasoon

Novel electrically conducting polymeric materials are prepared in this work. Polythiophene (PT) and poly (3-Methelthiophene) (P3MT) films were prepared by electro-polymerization method using cyclic voltammetry in acetonitrile as a solvent and lithium tetrafluoroborate as the electrolyte on a gold electrode. Electrical properties of P3MT have been examined in different environments using UV-Vis absorption spectroscopy and quantum mechanical ab initio calculations, The observed absorption peaks at 314 and 415 nm, were attributed to the n-π* and π-π* transitions, respectively in the conjugated polymer chain, in contrast, the observed absorbance peak at 649 nm, is responsible for electric conduction. The temperature dependence of the conductivity can be fitted to the Arrhenius and the VTF equations in different temperature ranges.


Author(s):  
Muna I Khalaf ◽  
Khulood A Saleh ◽  
Khalil S Khalil

Electro polymerization of N-benzothiazolyl maleamic acid (NBM) was carried out on stainless steel plate electrode in a protic medium of monomer aqueous solution using electrochemical oxidation procedure in electrochemical cell.Spectroscopic characterization techniques were investigated to obtain information about the chemical structure of polymer. The anti-corrosion action of polymer was investigated on stainless steel by electrochemical polarization method. In addition, the effect of adding nanomaterial (TiO2, ZnO (bulk-nano)) to monomer solution on the corrosion behavior of stainless steel was investigated. The results obtained showed that the corrosion rate of S-steel increased with temperature increase from 293K to 323K and the values of inhibition efficiency by coating polymer increase with nanomaterial addition. Apparent energies of activation have been calculated for the corrosion process of S-steel in acidic medium before and after polymeric coating. Furthermore were studied the effect of the preparing polymer on some strain of bacteria.


2021 ◽  
Author(s):  
Fang Ge ◽  
Sun Li ◽  
Zhe Wang ◽  
Wenzhong Zhang ◽  
Xiaowu Wang

Developing different synthetic approaches to realize controlled or living polymerization are aspirational to achieve polymers with defined molecular weight, narrow molecular weight distribution and unambiguous structures by polymer chemists. Herein,...


2021 ◽  
pp. 096739112110245
Author(s):  
Amrita Sharma ◽  
PP Pande

It has been observed that acrylate monomers are very difficult to polymerize with the low cost nitroxide catalyst 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO). Therefore, costly acyclic nitroxides such as N-tert-butyl-N-(1-diethylphosphono-2,2-dimethyl)-N-oxyl, (SG1), 2,2,5-Trimethyl-4-phenyl-3-azahexane-3-nitroxide (TIPNO) and TIPNO derivatives have to be used for the polymerization of the acrylic acid derivatives. There are very few reports on the use of TEMPO-derivatives toward the polymerization of n-butyl acrylate. Generally different reducing agents viz. glucose, ascorbic acid, hydroxyacetone etc. have been used to destroy excess TEMPO during the polymerization reaction. The acrylate polymerizations fail in the presence of TEMPO due to the strong C–O bond formed between the acrylate chain end and nitroxide. To the best of our knowledge, no literature report is available on the use of TEMPO without reducing agent or high temperature initiators, toward the polymerization of n-butyl acrylate. The present study has been carried out with a view to re-examine the application of low cost nitroxide TEMPO, so that it can be utilized towards the polymerization of acrylate monomers (e.g. n-butyl acrylate). We have been able to polymerize n-butyl acrylate using the nitroxide TEMPO as initiator (via a macroinitiator). In this synthesis, a polystyrene macroinitiator was synthesized in the first step from TEMPO, after this TEMPO end-capped styrene macroinitiator (PSt-TEMPO) is used to polymerize n-butyl acrylate monomer. The amount of macroinitiator taken was varied from 0.05% to 50% by weight of n-butyl acrylate monomer. The polymerization was carried out at 120°C by bulk polymerization method. The experimental findings showed a gradual increase in molecular weight of the polymer formed and decrease in the polydispersity index (PDI) with increase in amount of PSt-TEMPO macroinitiator taken. In all experiments conversion was more than 80%. These results indicate that the polymerization takes place through controlled polymerization process. Effect of different solvents on polymerization has also been investigated. In the following experiments TEMPO capped styrene has been used as macroinitiator leading to the successful synthesis of poly n-Butyl acrylate. It has been found that styrene macroinitiator is highly efficient for the nitroxide mediated polymerization, even in very small concentration for the synthesis of poly n-butyl acrylate. High concentration of macroinitiator results in the formation of block copolymers of polystyrene and poly ( n-butyl acrylate) viz. polystyrene-block-poly-( n-butyl acrylate). The use of TEMPO toward controlled polymerization is of much importance, because it is the nitroxide commercially available at the lowest cost.


Sign in / Sign up

Export Citation Format

Share Document