scholarly journals Global carbon dioxide efflux from rivers enhanced by high nocturnal emissions

2021 ◽  
Author(s):  
Lluís Gómez-Gener ◽  
Gerard Rocher-Ros ◽  
Tom Battin ◽  
Matthew J. Cohen ◽  
Higo J. Dalmagro ◽  
...  
Author(s):  
César Andrade ◽  
Fátima Viveiros ◽  
J. Virgílio Cruz ◽  
Rui Coutinho

2016 ◽  
Author(s):  
C. Frankenberg ◽  
S. S. Kulawik ◽  
S. Wofsy ◽  
F. Chevallier ◽  
B. Daube ◽  
...  

Abstract. In recent years, space-borne observations of atmospheric carbon-dioxide (CO2) have become increasingly used in global carbon-cycle studies. In order to obtain added value from space-borne measurements, they have to suffice stringent accuracy and precision requirements, with the latter being less crucial as it can be reduced by just enhanced sample size. Validation of CO2 column averaged dry air mole fractions (XCO2) heavily relies on measurements of the Total Carbon Column Observing Network TCCON. Owing to the sparseness of the network and the requirements imposed on space-based measurements, independent additional validation is highly valuable. Here, we use observations from the HIAPER Pole-to-Pole Observations (HIPPO) flights from January 2009 through September 2011 to validate CO2 measurements from satellites (GOSAT, TES, AIRS) and atmospheric inversion models (CarbonTracker CT2013B, MACC v13r1). We find that the atmospheric models capture the XCO2 variability observed in HIPPO flights very well, with correlation coefficients (r2) of 0.93 and 0.95 for CT2013B and MACC, respectively. Some larger discrepancies can be observed in profile comparisons at higher latitudes, esp. at 300 hPa during the peaks of either carbon uptake or release. These deviations can be up to 4 ppm and hint at misrepresentation of vertical transport. Comparisons with the GOSAT satellite are of comparable quality, with an r2 of 0.85, a mean bias μ of −0.06 ppm and a standard deviation σ of 0.45 ppm. TES exhibits an r2 of 0.75, μ of 0.34 ppm and σ of 1.13 ppm. For AIRS, we find an r2 of 0.37, μ of 1.11 ppm and σ of 1.46 ppm, with latitude-dependent biases. For these comparisons at least 6, 20 and 50 atmospheric soundings have been averaged for GOSAT, TES and AIRS, respectively. Overall, we find that GOSAT soundings over the remote pacific ocean mostly meet the stringent accuracy requirements of about 0.5 ppm for space-based CO2 observations.


2014 ◽  
Vol 7 (2) ◽  
pp. 521-610 ◽  
Author(s):  
C. Le Quéré ◽  
R. Moriarty ◽  
R. M. Andrew ◽  
G. P. Peters ◽  
P. Ciais ◽  
...  

Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe datasets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics and cement production data, respectively, while emissions from Land-Use Change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent Dynamic Global Vegetation Models forced by observed climate, CO2 and land cover change (some including nitrogen-carbon interactions). We compare the variability and mean land and ocean fluxes to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2004–2013), EFF was 8.9 ± 0.4 GtC yr−1, ELUC 0.9 ± 0.5 GtC yr−1, GATM 4.3 ± 0.1 GtC yr−1, SOCEAN 2.6 ± 0.5 GtC yr−1, and SLAND 2.9 ± 0.8 GtC yr−1. For year 2013 alone, EFF grew to 9.9 ± 0.5 GtC yr−1, 2.3% above 2012, contining the growth trend in these emissions. ELUC was 0.9 ± 0.5 GtC yr−1, GATM was 5.4 ± 0.2 GtC yr−1, SOCEAN was 2.9 ± 0.5 GtC yr−1 and SLAND was 2.5 ± 0.9 GtC yr−1. GATM was high in 2013 reflecting a steady increase in EFF and smaller and opposite changes between SOCEAN and SLAND compared to the past decade (2004–2013). The global atmospheric CO2 concentration reached 395.31 ± 0.10 ppm averaged over 2013. We estimate that EFF will increase by 2.5% (1.3–3.5%) to 10.1 ± 0.6 GtC in 2014 (37.0 ± 2.2 GtCO2 yr−1), 65% above emissions in 1990, based on projections of World Gross Domestic Product and recent changes in the carbon intensity of the economy. From this projection of EFF and assumed constant ELUC for 2014, cumulative emissions of CO2 will reach about 545 ± 55 GtC (2000 ± 200 GtCO2) for 1870–2014, about 75% from EFF and 25% from ELUC. This paper documents changes in the methods and datasets used in this new carbon budget compared with previous publications of this living dataset (Le Quéré et al., 2013, 2014). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2014). Italic font highlights significant methodological changes and results compared to the Le Quéré et al. (2014) manuscript that accompanies the previous version of this living data.


2013 ◽  
Vol 1 (1) ◽  
pp. 18-21 ◽  
Author(s):  
Zhenghui Xie ◽  
Ning Zeng ◽  
Huijun Wang ◽  
Zheng Lin ◽  
Xiangjun Tian ◽  
...  

Abstract The recent Ninth International Carbon Dioxide Conference (ICDC9) held in Beijing highlighted the importance and urgency of global carbon management, research challenges, and recent efforts made by Chinese scientists in this area.


Sign in / Sign up

Export Citation Format

Share Document