scholarly journals Author Correction: Fluorescent d-amino-acids reveal bi-cellular cell wall modifications important for Bdellovibrio bacteriovorus predation

2018 ◽  
Vol 3 (2) ◽  
pp. 254-254 ◽  
Author(s):  
Erkin Kuru ◽  
Carey Lambert ◽  
Jonathan Rittichier ◽  
Rob Till ◽  
Adrien Ducret ◽  
...  
2017 ◽  
Vol 2 (12) ◽  
pp. 1648-1657 ◽  
Author(s):  
Erkin Kuru ◽  
Carey Lambert ◽  
Jonathan Rittichier ◽  
Rob Till ◽  
Adrien Ducret ◽  
...  

mBio ◽  
2021 ◽  
Vol 12 (3) ◽  
Author(s):  
John Zupan ◽  
Zisheng Guo ◽  
Trevor Biddle ◽  
Patricia Zambryski

ABSTRACT The Agrobacterium growth pole ring (GPR) protein forms a hexameric ring at the growth pole (GP) that is essential for polar growth. GPR is large (2,115 amino acids) and contains 1,700 amino acids of continuous α-helices. To dissect potential GPR functional domains, we created deletions of regions with similarity to human apolipoprotein A-IV (396 amino acids), itself composed of α-helical domains. We also tested deletions of the GPR C terminus. Deletions were inducibly expressed as green fluorescent protein (GFP) fusion proteins and tested for merodiploid interference with wild-type (WT) GPR function, for partial function in cells lacking GPR, and for formation of paired fluorescent foci (indicative of hexameric rings) at the GP. Deletion of domains similar to human apolipoprotein A-IV in GPR caused defects in cell morphology when expressed in trans to WT GPR and provided only partial complementation to cells lacking GPR. Agrobacterium-specific domains A-IV-1 and A-IV-4 contain predicted coiled coil (CC) regions of 21 amino acids; deletion of CC regions produced severe defects in cell morphology in the interference assay. Mutants that produced the most severe effects on cell shape also failed to form paired polar foci. Modeling of A-IV-1 and A-IV-4 reveals significant similarity to the solved structure of human apolipoprotein A-IV. GPR C-terminal deletions profoundly blocked complementation. Finally, peptidoglycan (PG) synthesis is abnormally localized circumferentially in cells lacking GPR. The results support the hypothesis that GPR plays essential roles as an organizing center for membrane and PG synthesis during polar growth. IMPORTANCE Bacterial growth and division are extensively studied in model systems (Escherichia coli, Bacillus subtilis, and Caulobacter crescentus) that grow by dispersed insertion of new cell wall material along the length of the cell. An alternative growth mode—polar growth—is used by some Actinomycetales and Proteobacteria species. The latter phylum includes the family Rhizobiaceae, in which many species, including Agrobacterium tumefaciens, exhibit polar growth. Current research aims to identify growth pole (GP) factors. The Agrobacterium growth pole ring (GPR) protein is essential for polar growth and forms a striking hexameric ring structure at the GP. GPR is long (2,115 amino acids), and little is known about regions essential for structure or function. Genetic analyses demonstrate that the C terminus of GPR, and two internal regions with homology to human apolipoproteins (that sequester lipids), are essential for GPR function and localization to the GP. We hypothesize that GPR is an organizing center for membrane and cell wall synthesis during polar growth.


2007 ◽  
Vol 189 (19) ◽  
pp. 7154-7158 ◽  
Author(s):  
Judith Ferner-Ortner ◽  
Christoph Mader ◽  
Nicola Ilk ◽  
Uwe B. Sleytr ◽  
Eva M. Egelseer

ABSTRACT Surface plasmon resonance studies using C-terminal truncation forms of the S-layer protein SbsC (recombinant SbsC consisting of amino acids 31 to 270 [rSbsC31-270] and rSbsC31-443) and the secondary cell wall polymer (SCWP) isolated from Geobacillus stearothermophilus ATCC 12980 confirmed the exclusive responsibility of the N-terminal region comprising amino acids 31 to 270 for SCWP binding. Quantitative analyses indicated binding behavior demonstrating low, medium, and high affinities.


1976 ◽  
Vol 54 (11) ◽  
pp. 927-934 ◽  
Author(s):  
T. G. Villa ◽  
V. Notario ◽  
T. Benítez ◽  
J. R. Villanueva

An exo-1,3-β-glucanase (EC 3.2.1.—) has been purified from the culture fluid of the yeast Candida utilis, and its biochemical properties have been studied. The amino acid analysis revealed a high content of acidic amino acids. The purified enzyme had 20% carbohydrate and a net negative charge showing higher affinity for laminarin than for p-nitrophenyl-β-D-glucopyranoside and yeast cell-wall 1,3-β-glucans. In addition, the enzyme hydrolyzed the substrates starting from the nonreducing ends, releasing glucose as the exclusive hydrolysis product. The enzyme activity was strongly inhibited by lactones and also by some heavy-metal ions.


1969 ◽  
Vol 15 (4) ◽  
pp. 327-334
Author(s):  
M. P. Hatton

Preferential cell wall synthesis in Micrococcus lysodeikticus, as determined by an increase in the dry weight of the cell wall, took place in a medium containing DL-glutamic acid, DL-alanine, L-lysine, glycine, magnesium ions, glucose and phosphate buffer, pH 7.0. Cell wall synthesis could not be completely dissociated from protein synthesis in the 'cell wall' medium. The cell wall synthesized in the defined medium accounted for 40–56% of the total dry weight increase of the cells. Chloramphenicol had no effect on cell wall synthesis. Incorporation of uracil and guanine in the medium did not result in any increase in the amount of cell wall synthesized. DL-Glutamic acid alone, or a mixture of the three amino acids DL-alanine, L-lysine, and glycine, were capable of replacing the four amino acids present in the complete medium, but under these conditions the total dry weight of cell wall synthesized was only 75% of that produced in the complete medium. There was no reduction in cell wall synthesis when L-glutamic acid replaced DL-glutamic acid, L-alanine replaced DL-alanine, or sucrose replaced glucose in the cell wall medium. Deprivation of magnesium ions produced the greatest decrease in wall synthesis; this was the most important single factor involved in cell wall synthesis which was studied in the present investigation. There was no observable change in the chemical composition of the cell wall synthesized in the 'wall' medium when compared to that synthesized by cells grown in a complex medium.


1993 ◽  
Vol 58 (3) ◽  
pp. 683-689 ◽  
Author(s):  
Helmut Schneider ◽  
Gerhard Sigmund ◽  
Bettina Schricker ◽  
Klaus Thirring ◽  
Heinz Berner

2005 ◽  
Vol 187 (11) ◽  
pp. 3643-3649 ◽  
Author(s):  
Tsuyoshi Uehara ◽  
Kyoko Suefuji ◽  
Noelia Valbuena ◽  
Brian Meehan ◽  
Michael Donegan ◽  
...  

ABSTRACT Escherichia coli breaks down over 60% of the murein of its side wall and reuses the component amino acids to synthesize about 25% of the cell wall for the next generation. The amino sugars of the murein are also efficiently recycled. Here we show that the 1,6-anhydro-N-acetylmuramic acid (anhMurNAc) is returned to the biosynthetic pathway by conversion to N-acetylglucosamine-phosphate (GlcNAc-P). The sugar is first phosphorylated by anhydro- N -acetylmuramic acid kinase (AnmK), yielding MurNAc-P, and this is followed by action of an etherase which cleaves the bond between d-lactic acid and the N-acetylglucosamine moiety of MurNAc-P, yielding GlcNAc-P. The kinase gene has been identified by a reverse genetics method. The enzyme was overexpressed, purified, and characterized. The cell extract of an anmK deletion mutant totally lacked activity on anhMurNAc. Surprisingly, in the anmK mutant, anhMurNAc did not accumulate in the cytoplasm but instead was found in the medium, indicating that there was rapid efflux of free anhMurNAc.


Sign in / Sign up

Export Citation Format

Share Document