Nutritional requirements for cell wall synthesis in Micrococcus lysodeikticus

1969 ◽  
Vol 15 (4) ◽  
pp. 327-334
Author(s):  
M. P. Hatton

Preferential cell wall synthesis in Micrococcus lysodeikticus, as determined by an increase in the dry weight of the cell wall, took place in a medium containing DL-glutamic acid, DL-alanine, L-lysine, glycine, magnesium ions, glucose and phosphate buffer, pH 7.0. Cell wall synthesis could not be completely dissociated from protein synthesis in the 'cell wall' medium. The cell wall synthesized in the defined medium accounted for 40–56% of the total dry weight increase of the cells. Chloramphenicol had no effect on cell wall synthesis. Incorporation of uracil and guanine in the medium did not result in any increase in the amount of cell wall synthesized. DL-Glutamic acid alone, or a mixture of the three amino acids DL-alanine, L-lysine, and glycine, were capable of replacing the four amino acids present in the complete medium, but under these conditions the total dry weight of cell wall synthesized was only 75% of that produced in the complete medium. There was no reduction in cell wall synthesis when L-glutamic acid replaced DL-glutamic acid, L-alanine replaced DL-alanine, or sucrose replaced glucose in the cell wall medium. Deprivation of magnesium ions produced the greatest decrease in wall synthesis; this was the most important single factor involved in cell wall synthesis which was studied in the present investigation. There was no observable change in the chemical composition of the cell wall synthesized in the 'wall' medium when compared to that synthesized by cells grown in a complex medium.

1974 ◽  
Vol 60 (3) ◽  
pp. 673-705 ◽  
Author(s):  
A. N. CLEMENTS ◽  
TERRY E. MAY

1. Two nerve-muscle preparations were used to investigate the physiology of the locust retractor unguis muscle in relation to L-glutamic acid. These were an ‘isolated preparation’, in which the muscle and its nerve were dissected out, and a ‘perfusedfemur preparation’, in which the muscle suffered no mechanical disturbance. 2. Exposure of the nerve--muscle preparations to glutamate caused a variety of responses, some of which were shown to be abnormal and due to the experimental conditions. 3. When locust femora were perfused with saline or haemolymph the retractor unguis muscles were much more severely affected by glutamate if the hydrostatic pressure was slightly raised. At raised pressures the perfused-femur preparations were particularly prone to give repetitive and spontaneous contractions. 4. Analysis of haemolymph from adult male locusts showed that it contained, on average, 0-2 mmol/1 L-glutamate, 45 mol/1 total non-peptide amino acids, 5-0 mmol/1 calcium, and 11-6 mmol/1 magnesium. It was calculated that approximately 50% of the calcium and 75% of the magnesium ions are bound to amino acids, and that approximately 25% of the glutamic acid is bound to divalent metal ions. 5. The isolated preparations were severely affected by glutamate at the concentration at which it occurs in haemolymph, and it was concluded that in the intact locust some mechanism must protect the neuromuscular synapses from haemolymphg lutamate. No evidence could be obtained of the sequestration of glutamate by haemocytes, or of binding of glutamate to haemolymph proteins. 6. Calcium and magnesium ions reduced the sensitivity of nerve-muscle preparations to glutamate to a greater extent than could be accounted for by the formation of amino acid-metal complexes. This suggests that the protection afforded by calcium and magnesium involves an interaction of the metal ions with the neuromuscular system itself. 7. The retractor unguis muscle was much less sensitive to glutamate when it was contained within an undissected femur than in an isolated preparation. It was concluded that the muscle is normally protected from haemolymph glutamate by a diffusion barrier which is damaged on dissection. 8. Comparison of the fine structure of retractor unguis muscles, fixed either after dissection or while still contained within the femur, showed that dissection normally caused a partial separation of muscle fibres and damage to the connective tissue sheath, with the resultant exposure of some nerve endings. The connective tissue sheath may constitute the postulated diffusion barrier. 9. The excitatory synapses of the locust retractor unguis muscle are believed to be isolated from haemolymph glutamate by a diffusion barrier, which is tentatively identified with the connective tissue sheath that binds the muscle fibres together. Calcium and magnesium ions reduce the sensitivity of nerve-muscle preparations to glutamate, and may have such a role in the living insect.


1973 ◽  
Vol 32 (3) ◽  
pp. 525-532 ◽  
Author(s):  
Juana Wietzerbin-Falszpan ◽  
Bhupesh C. Das ◽  
Claude Gros ◽  
Jean-Francois Petit ◽  
Edgar Lederer

2020 ◽  
Vol 86 (9) ◽  
Author(s):  
Hao Wu ◽  
Ershu Xue ◽  
Ning Zhi ◽  
Qianqian Song ◽  
Kairen Tian ◽  
...  

ABSTRACT Lactococcus lactis encounters various environmental challenges, especially acid stress, during its growth. The cell wall can maintain the integrity and shape of the cell under environmental stress, and d-amino acids play an important role in cell wall synthesis. Here, by analyzing the effects of 19 different d-amino acids on the physiology of L. lactis F44, we found that exogenously supplied d-methionine and d-phenylalanine increased the nisin yield by 93.22% and 101.29%, respectively, as well as significantly increasing the acid resistance of L. lactis F44. The composition of the cell wall in L. lactis F44 with exogenously supplied d-Met or d-Phe was further investigated via a vancomycin fluorescence experiment and a liquid chromatography-mass spectrometry assay, which demonstrated that d-Met could be incorporated into the fifth position of peptidoglycan (PG) muropeptides and d-Phe could be added to the fourth and fifth positions. Moreover, overexpression of the PG synthesis gene murF further enhanced the levels of d-Met and d-Phe involved in PG and increased the survival rate under acid stress and the nisin yield of the strain. This study reveals that the exogenous supply of d-Met or d-Phe can change the composition of the cell wall and influence acid tolerance as well as nisin yield in L. lactis. IMPORTANCE As d-amino acids play an important role in cell wall synthesis, we analyzed the effects of 19 different d-amino acids on L. lactis F44, demonstrating that d-Met and d-Phe can participate in peptidoglycan (PG) synthesis and improve the acid resistance and nisin yield of this strain. murF overexpression further increased the levels of d-Met and d-Phe incorporated into PG and contributed to the acid resistance of the strain. These findings suggest that d-Met and d-Phe can be incorporated into PG to improve the acid resistance and nisin yield of L. lactis, and this study provides new ideas for the enhancement of nisin production.


1980 ◽  
Vol 26 (2) ◽  
pp. 141-145 ◽  
Author(s):  
Gy. Barabás ◽  
I. Szabó ◽  
A. Ottenberger ◽  
V. Zs.-Nagy ◽  
G. Szabó

A cell wall bound autolytic enzyme of a streptomycin-producing strain of Streptomyces griseus was investigated. The peptidoglycan fragments released by the enzyme showed antibiotic activity. Analysis of these fragments proved that streptomycin is bound to a cell wall peptide. The peptide contained the four amino acids characteristic of Streptomyces cell wall: alanine, glycine, diaminopimelic acid, and glutamine or glutamic acid.


1973 ◽  
Vol 47 (2) ◽  
pp. 181-189 ◽  
Author(s):  
R. S. V. Pullin

A defined medium is described as a basis for in vitro culture work with larval Fasciola hepatica. This medium, termed BCM, can be quickly made up by using a system of stock solutions. BCM contains inorganic salts, glucose, amino acids, vitamins and antibiotics, but no lipid or proteins. Rediae can be dissected from infected snails for culture, but many appear to be contaminated with bacteria. Large rediae cannot survive in BCM but free immature cercariae can complete their final maturation in vitro. This final maturation, from the 30th to the 35th day after miracidial penetration of donor snails, includes tail growth and appearance of body pigmentation. Cercariae matured in vitro encyst successfully when transferred from BCM to water. Small rediae survive in BCM for 5 days, but show no growth or development measured as dry weight and total nitrogen.


1967 ◽  
Vol 45 (4) ◽  
pp. 385-394 ◽  
Author(s):  
Ann Oaks

Corn roots grown in a glucose–salts medium in a continuous flow system suffered an initial loss of protein before an increase was observed. A maximal rate of increase in cell-wall carbohydrates was achieved after 20 hours in culture. There was some loss in RNA while the increase in DNA was slight. A synthetic mixture of 15 L-amino acids enhanced the growth (defined as increase in length, dry weight, or alcohol-insoluble nitrogen) of glucose-grown roots. With this enriched medium there was a slight increase of protein over the initial 20-hour period and a faster rate of increase after this time. No lag in the increase in cell-wall carbohydrates was observed. Despite these symptoms of better growth the level of DNA was not improved by the addition of the amino acids and the RNA content was actually lower than in the glucose-grown roots. Although the level of RNA was less in cultured than in normal roots, ribosomal and soluble RNA accounted for similar proportions of the total RNA in each case.


1961 ◽  
Vol 14 (3) ◽  
pp. 349 ◽  
Author(s):  
FJ Bergersen

A chemically defined medium for the growth of Rhizobium is described in which populations of up to 5 x 109 cells/ml were obtained. For the six strains of bacteria studied the complete medium supported exponential growth for two to five generations. The concentrations of biotin giving best growth varied ith strain between 125 and 250 f'g/l when the nitrogen source was sodium glutamate. NHt, NOs, and other amino acids, singly or in combination, did not upport as good growth as did sodium glutamate.


1995 ◽  
Vol 16 (1) ◽  
pp. 73-81
Author(s):  
M. Tertuliano ◽  
B. Le Rü

AbstractThe effect of a 2-month infestation by the cassava mealybug (Phenacoccus manihoti Mat. Ferr.) on the metabolism of nitrogen (amino acids) and carbon (carbohydrates), leaf area and total dry weight of five cassava varieties (Manihot esculenta Crantz), faux-caoutchouc (a hybrid of M. esculenta and M. glaziovii Muell, Arg.), poinsettia (Euphorbia pulcherrima Wild) and talinum (Talinum triangulare Jack) was studied. Free amino acid and free sugar contents as well as relative free amino acid composition in the leaf extracts, although found to be very different from one plant to another, were not significantly modified by P. manihoti infestation, except for the total amino acid contents of the cassava variety 30M7. Variations in one particular amino acid induced by mealybug infestation were not linked to the antibiotic resistance of these plants. Infestation by the cassava mealybug did not modify the total dry weight but reduced the total leaf area although this reduction was only significant in cassava varieties 59M2, 30M7 and M'pembe, and in faux-caoutchouc. Within the genus Manihot, the reduction in leaf area was strongly correlated (r= -0.878, P≤0.05) to the degree of antibiotic resistance and was coupled to an increase in the ratio of sugars to amino acids, suggesting a similarity between the effects of water stress and those of mealybug infestation.


1980 ◽  
Vol 26 (2) ◽  
pp. 115-120 ◽  
Author(s):  
G. D. Sprott ◽  
R. C. McKellar

Dithiothreitol reacted, at pH 9.0, with the isolated cell walls of Methanospirillum hungatii, to release about 23% of the cell wall dry weight as a high molecular weight fraction (> 0.5 million daltons). Untreated walls consisted of 70% amino acids, 11% lipid, and 6.6% carbohydrate. Sugars were identified as rhamnose, ribose, glucose, galactose, and mannose. The wall material that was released contained only 47% amino acids and was enriched in lipid, glucose, and phosphate. These results support data from electron micrographs, showing the localized release of cell wall material by the disulfide bond-breaking reagent at alkaline pH. In amino acid composition the untreated walls did not differ greatly from the material released by dithiothreitol, but differed considerably from the walls of another strain of M. hungatii. The ratios of the amino acids found in the cell wall proteins of several archaebacteria and of Bacillus cereus spore coats were similar.


Parasitology ◽  
1975 ◽  
Vol 71 (2) ◽  
pp. 311-326 ◽  
Author(s):  
G. A. M. Cross ◽  
R. A. Klein ◽  
D. J. Linstead

The amino acid compositions of several culture media have been analysed and compared. The utilization and excretion of amino acids and other metabolites have been followed during growth of Trypanosoma brucei S42 in a defined medium. All of the added L-threonine was metabolized by the cells, even when it was present at elevated concentrations. Glucose was consumed throughout the growth cycle: glutamine was consumed more rapidly than glutamic acid, which was itself used at about the same rate as proline. Threonine was cleaved to form glycine and acetate, both of which accumulated in the medium. Alanine and succinate were excreted together with a small amount of pyruvate, but these three products accounted for less than half of the glucose used. CO2 production from glucose was not measured, but insignificant amounts of CO2 were produced from threonine. Tetraethylthiuram disulphide blocked the cleavage of threonine and was a potent inhibitor of trypanosome growth.


Sign in / Sign up

Export Citation Format

Share Document