scholarly journals Coexistence of dynamical delocalization and spectral localization through stochastic dissipation

2021 ◽  
Author(s):  
Sebastian Weidemann ◽  
Mark Kremer ◽  
Stefano Longhi ◽  
Alexander Szameit

AbstractAnderson’s groundbreaking discovery that the presence of stochastic imperfections in a crystal may result in a sudden breakdown of conductivity1 revolutionized our understanding of disordered media. After stimulating decades of studies2, Anderson localization has found applications in various areas of physics3–12. A fundamental assumption in Anderson’s treatment is that no energy is exchanged with the environment. Recently, a number of studies shed new light on disordered media with dissipation14–22. In particular it has been predicted that random fluctuations solely in the dissipation, introduced by the underlying potential, could exponentially localize all eigenstates (spectral localization)14, similar to the original case without dissipation that Anderson considered. We show in theory and experiment that uncorrelated disordered dissipation can simultaneously cause spectral localization and wave spreading (dynamical delocalization). This discovery implies the breakdown of the commonly known correspondence between spectral and dynamical localization known from the Hermitian Anderson model with uncorrelated disorder.

Nanophotonics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 443-452
Author(s):  
Tianshu Jiang ◽  
Anan Fang ◽  
Zhao-Qing Zhang ◽  
Che Ting Chan

AbstractIt has been shown recently that the backscattering of wave propagation in one-dimensional disordered media can be entirely suppressed for normal incidence by adding sample-specific gain and loss components to the medium. Here, we study the Anderson localization behaviors of electromagnetic waves in such gain-loss balanced random non-Hermitian systems when the waves are obliquely incident on the random media. We also study the case of normal incidence when the sample-specific gain-loss profile is slightly altered so that the Anderson localization occurs. Our results show that the Anderson localization in the non-Hermitian system behaves differently from random Hermitian systems in which the backscattering is suppressed.


2002 ◽  
Vol 14 (03) ◽  
pp. 273-302 ◽  
Author(s):  
HERIBERT ZENK

We give a short summary on how to combine and extend results of Combes and Hislop [2] (short range Anderson model with additional displacements), Kirsch, Stollmann and Stolz [13] and [14] (long range Anderson model without displacements) to get localization in an energy interval above the infimum of the almost sure spectrum for a continuous multidimensional Anderson model including long range potentials and displacements.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Trésor Ekanga

We study the multiparticle Anderson model in the continuum and show that under some mild assumptions on the random external potential and the inter-particle interaction, for any finite number of particles, the multiparticle lower spectral edges are almost surely constant in absence of ergodicity. We stress that this result is not quite obvious and has to be handled carefully. In addition, we prove the spectral exponential and the strong dynamical localization of the continuous multiparticle Anderson model at low energy. The proof based on the multiparticle multiscale analysis bounds needs the values of the external random potential to be independent and identically distributed, whose common probability distribution is at least Log-Hölder continuous.


2006 ◽  
Vol 16 (06) ◽  
pp. 1835-1839
Author(s):  
H. CAO ◽  
W. FANG ◽  
V. A. PODOLSKIY ◽  
E. E. NARIMANOV

We report the first direct observation of lasing action from a dynamically localized mode in a microdisk resonator with rough boundary. In contrast to microlasers based on stable ray trajectories, the performance of our device is robust with respect to the boundary roughness and corresponding ray chaos, taking advantage of Anderson localization in angular momentum. The resonator design, although demonstrated here in GaAs-InAs microdisk laser, should be applicable to any lasers and sensors based on semiconductor or polymer materials.


2020 ◽  
pp. 2060010
Author(s):  
C. Rojas-Molina

In this note, we review some results on localization and related properties for random Schrödinger operators arising in aperiodic media. These include the Anderson model associated to disordered quasicrystals and also the so-called Delone operators, operators associated to deterministic aperiodic structures.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Hitesh J. Changlani ◽  
Norm M. Tubman ◽  
Taylor L. Hughes

Abstract Two powerful theoretical predictions, Anderson localization and the Imry-Ma argument, impose significant restrictions on the phases of matter that can exist in the presence of even the smallest amount of disorder in one-dimensional systems. These predictions forbid electrically conducting states and ordered states respectively. It was thus remarkable that a mechanism to circumvent Anderson localization relying on the presence of correlated disorder was found, that is also realized in certain biomolecular systems. In a similar manner, we show that the Imry-Ma argument can be circumvented, resulting in the formation of stable ordered states with discrete broken symmetries in disordered one dimensional systems. We then investigate other mechanisms by which disorder can destroy an ordered state.


2002 ◽  
Vol 14 (04) ◽  
pp. 375-407 ◽  
Author(s):  
FUMIHIKO NAKANO

We consider the charge transport in the tight-binding Anderson model. Under a mild condition on the Fermi projection, we show that it is zero almost surely. This result has wider applicability than our previous work [12], while the definition of charge transport is slightly different. It also applies to the computation of non-diagonal component of the conductivity tensor which recovers the famous result of quantization of Hall conductivity in quantum Hall systems.


Sign in / Sign up

Export Citation Format

Share Document