The potential of mitochondrial genome engineering

Author(s):  
Pedro Silva-Pinheiro ◽  
Michal Minczuk
Biology ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 358
Author(s):  
Ryan R. Cochrane ◽  
Stephanie L. Brumwell ◽  
Arina Shrestha ◽  
Daniel J. Giguere ◽  
Samir Hamadache ◽  
...  

Algae are attractive organisms for biotechnology applications such as the production of biofuels, medicines, and other high-value compounds due to their genetic diversity, varied physical characteristics, and metabolic processes. As new species are being domesticated, rapid nuclear and organelle genome engineering methods need to be developed or optimized. To that end, we have previously demonstrated that the mitochondrial genome of microalgae Phaeodactylum tricornutum can be cloned and engineered in Saccharomyces cerevisiae and Escherichia coli. Here, we show that the same approach can be used to clone mitochondrial genomes of another microalga, Thalassiosira pseudonana. We have demonstrated that these genomes can be cloned in S. cerevisiae as easily as those of P. tricornutum, but they are less stable when propagated in E. coli. Specifically, after approximately 60 generations of propagation in E. coli, 17% of cloned T. pseudonana mitochondrial genomes contained deletions compared to 0% of previously cloned P. tricornutum mitochondrial genomes. This genome instability is potentially due to the lower G+C DNA content of T. pseudonana (30%) compared to P. tricornutum (35%). Consequently, the previously established method can be applied to clone T. pseudonana’s mitochondrial genome, however, more frequent analyses of genome integrity will be required following propagation in E. coli prior to use in downstream applications.


2018 ◽  
Vol 34 (2) ◽  
pp. 101-110 ◽  
Author(s):  
Payam A. Gammage ◽  
Carlos T. Moraes ◽  
Michal Minczuk

2018 ◽  
Author(s):  
Jarryd M. Campbell ◽  
Ester Perales-Clemente ◽  
Hirotaka Ata ◽  
Noemi Vidal-Folch ◽  
Weibin Liu ◽  
...  

Summary ParagraphMitochondria are a network of critical intracellular organelles with diverse functions ranging from energy production to cell signaling. The mitochondrial genome (mtDNA) consists of 37 genes that support oxidative phosphorylation and are prone to dysfunction that can lead to currently untreatable diseases. Further characterization of mtDNA gene function and creation of more accurate models of human disease will require the ability to engineer precise genomic sequence modifications. To date, mtDNA has been inaccessible to direct modification using traditional genome engineering tools due to unique DNA repair contexts in mitochondria1. Here, we report a new DNA modification process using sequence-specific transcription activator-like effector (TALE) proteins to manipulate mtDNA in vivo and in vitro for reverse genetics applications. First, we show mtDNA deletions can be induced in Danio rerio (zebrafish) using site-directed mitoTALE-nickases (mito-nickases). Using this approach, the protein-encoding mtDNA gene nd4 was deleted in injected zebrafish embryos. Furthermore, this DNA engineering system recreated a large deletion spanning from nd5 to atp8, which is commonly found in human diseases like Kearns-Sayre syndrome (KSS) and Pearson syndrome. Enrichment of mtDNA-deleted genomes was achieved using targeted mitoTALE-nucleases (mitoTALENs) by co-delivering both mito-nickases and mitoTALENs into zebrafish embryos. This combined approach yielded deletions in over 90% of injected animals, which were maintained through adulthood in various tissues. Subsequently, we confirmed that large, targeted deletions could be induced with this approach in human cells. In addition, we show that, when provided with a single nick on the mtDNA light strand, the binding of a terminal TALE protein alone at the intended recombination site is sufficient for deletion induction. This “block and nick” approach yielded engineered mitochondrial molecules with single nucleotide precision using two different targeted deletion sites. This precise seeding method to engineer mtDNA variants is a critical step for the exploration of mtDNA function and for creating new cellular and animal models of mitochondrial disease.


2018 ◽  
Vol 62 (3) ◽  
pp. 455-465 ◽  
Author(s):  
Pavandeep K. Rai ◽  
Lyndsey Craven ◽  
Kurt Hoogewijs ◽  
Oliver M. Russell ◽  
Robert N. Lightowlers

Mitochondrial DNA (mtDNA) is a multi-copy genome whose cell copy number varies depending on tissue type. Mutations in mtDNA can cause a wide spectrum of diseases. Mutated mtDNA is often found as a subset of the total mtDNA population in a cell or tissue, a situation known as heteroplasmy. As mitochondrial dysfunction only presents after a certain level of heteroplasmy has been acquired, ways to artificially reduce or replace the mutated species have been attempted. This review addresses recent approaches and advances in this field, focusing on the prevention of pathogenic mtDNA transfer via mitochondrial donation techniques such as maternal spindle transfer and pronuclear transfer in which mutated mtDNA in the oocyte or fertilized embryo is substituted with normal copies of the mitochondrial genome. This review also discusses the molecular targeting and cleavage of pathogenic mtDNA to shift heteroplasmy using antigenomic therapy and genome engineering techniques including Zinc-finger nucleases and transcription activator-like effector nucleases. Finally, it considers CRISPR technology and the unique difficulties that mitochondrial genome editing presents.


2018 ◽  
Vol XIII (3) ◽  
Author(s):  
I.О. Маzunin

Sign in / Sign up

Export Citation Format

Share Document