Lighting up lattice vibrations

2021 ◽  
Vol 6 (3) ◽  
pp. 197-197
Author(s):  
Ankita Anirban
Keyword(s):  
1981 ◽  
Vol 42 (C6) ◽  
pp. C6-341-C6-343
Author(s):  
G. Kanellis ◽  
J. F. Morhange ◽  
M. Balkanski

1982 ◽  
Vol 47 (4) ◽  
pp. 1176-1183 ◽  
Author(s):  
Alexander Muck ◽  
Olga Smrčková ◽  
Bohumil Hájek

Infrared spectra of mixed crystals Sc(PO4, VO4) and Y(PO4, VO4) have been studied from the point of view of group analysis. These systems form substitution mixed crystals in tetragonal space group D194h. The anions having proper symmetry Td or D2d in site symmetry D2d exhibit in spectra lowering of the site symmetry to effective C2 as a result of lattice vibrations of the type T(B2).


2001 ◽  
Vol 711 ◽  
Author(s):  
Octavio Gomez-Martinez ◽  
Daniel H. Aguilar ◽  
Patricia Quintana ◽  
Juan J. Alvarado-Gil ◽  
Dalila Aldana ◽  
...  

ABSTRACTFourier Transform infrared spectroscopy has been employed to study the shells of two kind of mollusks, American oysters (Crassostrea virginica) and mussels (Ischadium recurvum). It is shown that it is possible to distinguish the different calcium carbonate lattice vibrations in each case, mussel shells present aragonite vibration frequencies, and the oyster shells present those corresponding to calcite. The superposition, shift and broadening of the infrared bands are discussed. Changes in the vibration modes due to successive thermal treatments are also reported.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Matthew J. Trott ◽  
Chris A. Hooley

AbstractThe transition metal dichalcogenides offer significant promise for the tunable realisation and application of correlated electronic phases. However, tuning their properties requires an understanding of the physical mechanisms underlying their experimentally observed ordered phases, and in particular the extent to which lattice vibrations are a necessary ingredient. Here we present a potential mechanism for charge-density-wave formation in monolayers of vanadium diselenide in which the key role at low energies is played by a combination of electron–electron interactions and nesting. There is a competition between superconducting and density-wave fluctuations as sections of the Fermi surface are tuned to perfect nesting. This competition leads to charge-density-wave order when the effective Heisenberg exchange interaction is comparable to the effective Coulomb repulsion. When all effective interactions are purely repulsive, it results instead in d-wave superconductivity. We discuss the possible role of lattice vibrations in enhancing the effective Heisenberg exchange during the earlier stages of the renormalisation group flow.


1973 ◽  
Vol 59 (8) ◽  
pp. 4535-4539 ◽  
Author(s):  
U. Shmueli ◽  
M. Polak ◽  
M. Sheinblatt

1973 ◽  
Vol 27 (1) ◽  
pp. 22-26 ◽  
Author(s):  
S. M. Craven ◽  
F. F. Bentley ◽  
D. F. Pensenstadler

The low frequency infrared spectra from 450 to 75 cm−1 of seven oximes and five aldoximes have been recorded for pure samples and for dilute solutions in cyclohexane. An intense characteristic band is present in the solution spectra at 367 ± 10 cm−1. This characteristic band shifts to 275 ± 10 cm−1 in the spectra of the OD compounds. The 367 ± 10 cm−1 and 275 ± 10 cm−1 bands are assigned to OH and OD torsional vibrations. A comparison of the solution spectra with spectra of the solid samples indicated that the OH … N hydrogen bond stretch of oximes and aldoximes occurs in 300 to 200 cm−1 region. Strong bands also are present in 140 to 100 cm−1 region which are due to OH … N bending modes or perhaps lattice vibrations.


Sign in / Sign up

Export Citation Format

Share Document