scholarly journals Structures of influenza A virus RNA polymerase offer insight into viral genome replication

Nature ◽  
2019 ◽  
Vol 573 (7773) ◽  
pp. 287-290 ◽  
Author(s):  
Haitian Fan ◽  
Alexander P. Walker ◽  
Loïc Carrique ◽  
Jeremy R. Keown ◽  
Itziar Serna Martin ◽  
...  
2019 ◽  
Vol 1 (1A) ◽  
Author(s):  
Alexander Walker ◽  
Haitian Fan ◽  
Loic Carrique ◽  
Jeremy Keown ◽  
David Bauer ◽  
...  

2018 ◽  
Vol 92 (16) ◽  
Author(s):  
Benjamin E. Nilsson-Payant ◽  
Jane Sharps ◽  
Narin Hengrung ◽  
Ervin Fodor

ABSTRACTThe heterotrimeric influenza A virus RNA-dependent RNA polymerase complex, composed of PB1, PB2, and PA subunits, is responsible for transcribing and replicating the viral RNA genome. The N-terminal endonuclease domain of the PA subunit performs endonucleolytic cleavage of capped host RNAs to generate capped RNA primers for viral transcription. A surface-exposed flexible loop (PA51-72-loop) in the PA endonuclease domain has been shown to be dispensable for endonuclease activity. Interestingly, the PA51-72-loop was found to form different intramolecular interactions depending on the conformational arrangement of the polymerase. In this study, we show that a PA subunit lacking the PA51-72-loop assembles into a heterotrimeric polymerase with PB1 and PB2. We demonstrate that in a cellular context, the PA51-72-loop is required for RNA replication but not transcription by the viral polymerase. In agreement, recombinant viral polymerase lacking the PA51-72-loop is able to carry out cap-dependent transcription but is inhibited inde novoreplication initiationin vitro. Furthermore, viral RNA (vRNA) synthesis is also restricted during ApG-primed extension, indicating that the PA51-72-loop is required not only for replication initiation but also for elongation on a cRNA template. We propose that the PA51-72-loop plays a role in the stabilization of the replicase conformation of the polymerase. Together, these results further our understanding of influenza virus RNA genome replication in general and highlight a role of the PA endonuclease domain in polymerase function in particular.IMPORTANCEInfluenza A viruses are a major global health threat, not only causing significant morbidity and mortality every year but also having the potential to cause severe pandemic outbreaks like the 1918 influenza pandemic. The viral polymerase is a protein complex which is responsible for transcription and replication of the viral genome and therefore is an attractive target for antiviral drug development. For that purpose it is important to understand the mechanisms of how the virus replicates its genome and how the viral polymerase works on a molecular level. In this report, we characterize the role of the flexible surface-exposed PA51-72-loop in polymerase function and offer new insights into the replication mechanism of influenza A viruses.


PLoS ONE ◽  
2010 ◽  
Vol 5 (12) ◽  
pp. e15140 ◽  
Author(s):  
Takahito Kashiwagi ◽  
Koyu Hara ◽  
Yoko Nakazono ◽  
Nobuyuki Hamada ◽  
Hiroshi Watanabe

2011 ◽  
Vol 414 (4) ◽  
pp. 719-726 ◽  
Author(s):  
Tadaki Suzuki ◽  
Akira Ainai ◽  
Noriyo Nagata ◽  
Tetsutaro Sata ◽  
Hirofumi Sawa ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1254
Author(s):  
Stefano Elli ◽  
Denisa Bojkova ◽  
Marco Bechtel ◽  
Thomas Vial ◽  
David Boltz ◽  
...  

Pandemic SARS-CoV-2 causes a mild to severe respiratory disease called coronavirus disease 2019 (COVID-19). While control of the SARS-CoV-2 spread partly depends on vaccine-induced or naturally acquired protective herd immunity, antiviral strategies are still needed to manage COVID-19. Enisamium is an inhibitor of influenza A and B viruses in cell culture and clinically approved in countries of the Commonwealth of Independent States. In vitro, enisamium acts through metabolite VR17-04 and inhibits the activity of the influenza A virus RNA polymerase. Here we show that enisamium can inhibit coronavirus infections in NHBE and Caco-2 cells, and the activity of the SARS-CoV-2 RNA polymerase in vitro. Docking and molecular dynamics simulations provide insight into the mechanism of action and indicate that enisamium metabolite VR17-04 prevents GTP and UTP incorporation. Overall, these results suggest that enisamium is an inhibitor of SARS-CoV-2 RNA synthesis in vitro.


2014 ◽  
Vol 10 (6) ◽  
pp. e1004164 ◽  
Author(s):  
Guillaume Fournier ◽  
Chiayn Chiang ◽  
Sandie Munier ◽  
Andru Tomoiu ◽  
Caroline Demeret ◽  
...  

Virology ◽  
1995 ◽  
Vol 208 (1) ◽  
pp. 38-47 ◽  
Author(s):  
Licheng Shi ◽  
Donald F. Summers ◽  
Qinghai Peng ◽  
Jose M. Galarza

2017 ◽  
Vol 91 (7) ◽  
Author(s):  
Benjamin E. Nilsson ◽  
Aartjan J. W. te Velthuis ◽  
Ervin Fodor

ABSTRACT The RNA genome of influenza A viruses is transcribed and replicated by the viral RNA-dependent RNA polymerase, composed of the subunits PA, PB1, and PB2. High-resolution structural data revealed that the polymerase assembles into a central polymerase core and several auxiliary highly flexible, protruding domains. The auxiliary PB2 cap-binding and the PA endonuclease domains are both involved in cap snatching, but the role of the auxiliary PB2 627 domain, implicated in host range restriction of influenza A viruses, is still poorly understood. In this study, we used structure-guided truncations of the PB2 subunit to show that a PB2 subunit lacking the 627 domain accumulates in the cell nucleus and assembles into a heterotrimeric polymerase with PB1 and PA. Furthermore, we showed that a recombinant viral polymerase lacking the PB2 627 domain is able to carry out cap snatching, cap-dependent transcription initiation, and cap-independent ApG dinucleotide extension in vitro, indicating that the PB2 627 domain of the influenza virus RNA polymerase is not involved in core catalytic functions of the polymerase. However, in a cellular context, the 627 domain is essential for both transcription and replication. In particular, we showed that the PB2 627 domain is essential for the accumulation of the cRNA replicative intermediate in infected cells. Together, these results further our understanding of the role of the PB2 627 domain in transcription and replication of the influenza virus RNA genome. IMPORTANCE Influenza A viruses are a major global health threat, not only causing disease in both humans and birds but also placing significant strains on economies worldwide. Avian influenza A virus polymerases typically do not function efficiently in mammalian hosts and require adaptive mutations to restore polymerase activity. These adaptations include mutations in the 627 domain of the PB2 subunit of the viral polymerase, but it still remains to be established how these mutations enable host adaptation on a molecular level. In this report, we characterize the role of the 627 domain in polymerase function and offer insights into the replication mechanism of influenza A viruses.


Sign in / Sign up

Export Citation Format

Share Document