scholarly journals Dimerisation of the influenza virus RNA polymerase during viral genome replication

2019 ◽  
Vol 1 (1A) ◽  
Author(s):  
Alexander Walker ◽  
Haitian Fan ◽  
Loic Carrique ◽  
Jeremy Keown ◽  
David Bauer ◽  
...  
Nature ◽  
2019 ◽  
Vol 573 (7773) ◽  
pp. 287-290 ◽  
Author(s):  
Haitian Fan ◽  
Alexander P. Walker ◽  
Loïc Carrique ◽  
Jeremy R. Keown ◽  
Itziar Serna Martin ◽  
...  

2019 ◽  
Vol 1 (1A) ◽  
Author(s):  
Catherine Kendall ◽  
Henna Khalid ◽  
Marietta Mueller ◽  
Alain Kohl ◽  
Andres Merits ◽  
...  

2004 ◽  
Vol 85 (12) ◽  
pp. 3689-3698 ◽  
Author(s):  
Anne E. Mullin ◽  
Rosa M. Dalton ◽  
Maria Joao Amorim ◽  
Debra Elton ◽  
Paul Digard

mBio ◽  
2022 ◽  
Author(s):  
Sho Miyamoto ◽  
Masahiro Nakano ◽  
Takeshi Morikawa ◽  
Ai Hirabayashi ◽  
Ryoma Tamura ◽  
...  

Influenza A virus ribonucleoprotein complex (RNP) is responsible for viral genome replication, thus playing essential roles in the virus life cycle. RNP formation occurs in the nuclei of infected cells; however, little is known about the nuclear domains involved in this process.


2001 ◽  
Vol 276 (33) ◽  
pp. 31179-31185 ◽  
Author(s):  
Ayae Honda ◽  
Atsushi Endo ◽  
Kiyohisa Mizumoto ◽  
Akira Ishihama

2015 ◽  
Vol 89 (12) ◽  
pp. 6376-6390 ◽  
Author(s):  
Bruno Da Costa ◽  
Alix Sausset ◽  
Sandie Munier ◽  
Alexandre Ghounaris ◽  
Nadia Naffakh ◽  
...  

ABSTRACTThe influenza virus RNA-dependent RNA polymerase catalyzes genome replication and transcription within the cell nucleus. Efficient nuclear import and assembly of the polymerase subunits PB1, PB2, and PA are critical steps in the virus life cycle. We investigated the structure and function of the PA linker (residues 197 to 256), located between its N-terminal endonuclease domain and its C-terminal structured domain that binds PB1, the polymerase core. Circular dichroism experiments revealed that the PA linker by itself is structurally disordered. A large series of PA linker mutants exhibited a temperature-sensitive (ts) phenotype (reduced viral growth at 39.5°C versus 37°C/33°C), suggesting an alteration of folding kinetic parameters. Thetsphenotype was associated with a reduced efficiency of replication/transcription of a pseudoviral reporter RNA in a minireplicon assay. Using a fluorescent-tagged PB1, we observed thattsand lethal PA mutants did not efficiently recruit PB1 to reach the nucleus at 39.5°C. A protein complementation assay using PA mutants, PB1, and β-importin IPO5 tagged with fragments of theGaussia princepsluciferase showed that increasing the temperature negatively modulated the PA-PB1 and the PA-PB1-IPO5 interactions or complex stability. The selection of revertant viruses allowed the identification of different types of compensatory mutations located in one or the other of the three polymerase subunits. Twotsmutants were shown to be attenuated and able to induce antibodies in mice. Taken together, our results identify a PA domain critical for PB1-PA nuclear import and that is a “hot spot” to engineertsmutants that could be used to design novel attenuated vaccines.IMPORTANCEBy targeting a discrete domain of the PA polymerase subunit of influenza virus, we were able to identify a series of 9 amino acid positions that are appropriate to engineer temperature-sensitive (ts) mutants. This is the first time that a large number oftsmutations were engineered in such a short domain, demonstrating that rational design oftsmutants can be achieved. We were able to associate this phenotype with a defect of transport of the PA-PB1 complex into the nucleus. Reversion substitutions restored the ability of the complex to move to the nucleus. Two of thesetsmutants were shown to be attenuated and able to produce antibodies in mice. These results are of high interest for the design of novel attenuated vaccines and to develop new antiviral drugs.


2014 ◽  
Author(s):  
◽  
Olufemi Fasina

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Viruses as obligate intracellular metabolic parasite require the capacity to orchestrate and modulate the host environment either in the nucleus or cytoplasm for their efficient reproductive life cycle. This warrants the use of diverse range of proteins expressed from the viral genome with the ability of regulating viral genome replication, transcription and translation, in addition antagonizing host factors inhibitory to the virus. Therefore, in order to achieve these goals, viruses utilizes gene expression strategies to expand their coding capacity. Gene expression mechanism such as transcription initiation, capping, splicing and 3�-end processing afford viruses the opportunities to utilize the eukaryotic metabolic machineries for generating proteome diversity. Parvoviruses and other DNA viruses effectively capitalize on their use of nuclear eukaryotic metabolic machineries to co-opt host cell factors for optimal replication and gene expression. Parvoviruses with small genome size and overlapping open reading frames utilize alternative transcription initiation, alternative splicing and alternative polyadenylation to co-ordinate the expression of its non-structural and structural proteins. In this work, we have characterized how two parvoviruses; Dependovirus AAV5 and Bocavirus Minute virus of canine (MVC) utilize alternative gene expression mechanisms and strategies to optimize expression of viral proteins from their genome.


2006 ◽  
Vol 81 (3) ◽  
pp. 1339-1349 ◽  
Author(s):  
Tadasuke Naito ◽  
Fumitaka Momose ◽  
Atsushi Kawaguchi ◽  
Kyosuke Nagata

ABSTRACT Transcription and replication of the influenza virus RNA genome occur in the nuclei of infected cells through the viral RNA-dependent RNA polymerase consisting of PB1, PB2, and PA. We previously identified a host factor designated RAF-1 (RNA polymerase activating factor 1) that stimulates viral RNA synthesis. RAF-1 is found to be identical to Hsp90. Here, we examined the intracellular localization of Hsp90 and viral RNA polymerase subunits and their molecular interaction. Hsp90 was found to interact with PB2 and PB1, and it was relocalized to the nucleus upon viral infection. We found that the nuclear transport of Hsp90 occurs in cells expressing PB2 alone. The nuclear transport of Hsp90 was in parallel with that of the viral RNA polymerase binary complexes, either PB1 and PB2 or PB1 and PA, as well as with that of PB2 alone. Hsp90 also interacted with the binary RNA polymerase complex PB1-PB2, and it was dissociated from the PB1-PB2 complex upon its association with PA. Furthermore, Hsp90 could form a stable PB1-PB2-Hsp90 complex prior to the formation of a ternary polymerase complex by the assembly of PA in the infected cells. These results suggest that Hsp90 is involved in the assembly and nuclear transport of viral RNA polymerase subunits, possibly as a molecular chaperone for the polymerase subunits prior to the formation of a mature ternary polymerase complex.


2017 ◽  
Vol 232 ◽  
pp. 134-138 ◽  
Author(s):  
Huanzhou Xu ◽  
Sujuan Hao ◽  
Junmei Zhang ◽  
Zhen Chen ◽  
Hanzhong Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document