Allometric rules for mammalian cortical layer 5 neuron biophysics

Nature ◽  
2021 ◽  
Author(s):  
Lou Beaulieu-Laroche ◽  
Norma J. Brown ◽  
Marissa Hansen ◽  
Enrique H. S. Toloza ◽  
Jitendra Sharma ◽  
...  
Keyword(s):  
1968 ◽  
Vol 58 (3) ◽  
pp. 364-376 ◽  
Author(s):  
S. Pesonen ◽  
M. Ikonen ◽  
B-J. Procopé ◽  
A. Saure

ABSTRACT The ovaries of ten patients, at least one year after the post-menopause, were incubated with two Δ5-C19-steroids and also studied histochemically. All these patients had post-menopausal uterine bleeding and increased oestrogen excretion of the urine. The urinary estimations of gonadotrophins, 17-KS, 17-OHCS and pregnanediol were carried out on all patients. Vaginal smears were read according to Papanicolaou, and the endometrium and ovaries were studied histologically. The incubation experiments indicate the presence of Δ5-3β-hydroxysteroid-dehydrogenase. When androst-5-ene-3β,17β-diol was used as precursor the formation of testosterone occurred without any concomitant production of DHA and/or androstenedione. This seems to indicate the possible role of the Δ5-pathway in the formation of testosterone by post-menopausal ovarian tissue. The histochemical reactions indicated a reducing activity on NADH, lactate and glucose-6-phosphate, in certain corpora albicantia, atretic follicles and in diffuse thecoma regions in the cortical layer of the ovary. Steroid-3β-ol-dehydrogenase and β-hydroxybutyrate-dehydrogenase were found only at the edges of certain corpora albicantia, in some individual stroma cell groups and in some atretic follicles. Our studies, both biochemical and histochemical, suggest that the observed increase in the urinary oestrogens of the patients studied might in part at least, be of ovarian origin. This opinion is also supported by the postoperative oestrogen values.


2020 ◽  
Vol 598 (18) ◽  
pp. 3973-4001 ◽  
Author(s):  
Josephine Ansorge ◽  
Desire Humanes‐Valera ◽  
François P. Pauzin ◽  
Martin K. Schwarz ◽  
Patrik Krieger

2019 ◽  
Vol 15 ◽  
pp. P958-P958
Author(s):  
Kaiping Xu ◽  
Julie Hjelmhaug ◽  
Kurt Laha ◽  
Zhong-Wei Du

Parasitology ◽  
1965 ◽  
Vol 55 (1) ◽  
pp. 173-181 ◽  
Author(s):  
D. L. Lee

The cuticle of adults ofNippostrongylus brasiliensishas been described using histological, histochemical and ultrastructural techniques.The cuticle has the following layers: an outer triple-layered membrane; a single cortical layer; a fluid-filled layer which is traversed by numerous collagen fibrils; struts which support the fourteen longitudinal ridges of the cuticle and which are suspended by collagen fibrils in the fluid-filled layer; two fibre layers, each layer apparently containing three layers of fibres; and a basement lamella.The fluid-filled layer contains haemoglobin and esterase.The muscles of the body wall are attached to either the basement lamella or to the fibre layers of the cuticle.The mitochondria of the hypodermis are of normal appearance.The longitudinal ridges of the cuticle appear to abrade the microvilli of the intestinal cells of the host.Possible functions of the cuticle are discussed.I wish to thank Dr P. Tate, in whose department this work was done, for helpful suggestions and criticism at all stages of this work, and Mr A. Page for technical assistance. I also wish to thank Professor Boyd for permission to use the electron microscope in the Department of Anatomy.


1994 ◽  
Vol 107 (3) ◽  
pp. 673-682 ◽  
Author(s):  
G. Callaini ◽  
M.G. Riparbelli ◽  
R. Dallai

Maternally inherited cytoplasmic bacteria have occasionally been observed in embryos and adults of different strains of several Drosophila species. While there is a considerable body of data on the relationship between bacteria and embryo viability, little is known about the behavior of these bacteria during the early development of Drosophila. In eggs laid by infected Drosophila melanogaster females we showed that cytoplasmic bacteria were initially concentrated in a thin cortical layer and scattered in the yolk region. During the following syncytial blastoderm mitoses the bacteria mainly accumulated towards the poles of the mitotic spindles, suggesting that astral microtubules play a role in localizing bacteria. This is supported by the observation that treatment of the infected embryos with the microtubule-disrupting drug colchicine led to the partial dissociation of the bacteria from the spindle poles, whereas cytochalasin treatment left almost all the bacterial clusters intact. Moreover, bacteria were not found near the polar bodies and yolk nuclei, which were without astral microtubules. In mitosis-defective embryos, with centrosomes dissociated from the nuclei, the bacteria were concentrated in association with the isolated astral microtubules, and in cold-treated embryos, in which microtubules regrew from isolated centrosomes after recovering, the bacteria clustered around the newly formed asters. These observations, also supported by electron microscope analysis, indicate a close relationship between cytoplasmic bacteria and astral microtubules, and suggest that the latter were able to build discrete cytoplasmic domains ensuring the proper distribution of cytoplasmic components during the blastoderm mitoses, despite the lack of cell membranes.


1996 ◽  
Vol 75 (1) ◽  
pp. 217-232 ◽  
Author(s):  
J. Xing ◽  
G. L. Gerstein

1. Mechanisms underlying cortical reorganizations were studied using a three-layered neural network model with neuronal groups already formed in the cortical layer. 2. Dynamic changes induced in cortex by behavioral training or intracortical microstimulation (ICMS) were simulated. Both manipulations resulted in reassembly of neuronal groups and formation of stimulus-dependent assemblies. Receptive fields of neurons and cortical representation of inputs also changed. Many neurons that had been weakly responsive or silent became active. 3. Several types of learning models were examined in simulating behavioral training, ICMS-induced dynamic changes, deafferentation, or cortical lesion. Each learning model most accurately reproduced features of experimental data from different manipulations, suggesting that more than one plasticity mechanism might be able to induce dynamic changes in cortex. 4. After skin or cortical stimulation ceased, as spontaneous activity continued, the stimulus-dependent assemblies gradually reverted into structure-dependent neuronal groups. However, relationships among individual neurons and identities of many neurons did not return to their original states. Thus a different set of neurons would be recruited by the same training stimulus sequence on its next presentation. 5. We also reproduced several typical long-term reorganizations caused by pathological manipulations such as cortical lesions, input loss, and digit fusion. 6. In summary, with Hebbian plasticity rules on lateral connections, the network model is capable of reproducing most characteristics of experiments on cortical reorganization. We propose that an important mechanism underlying cortical plastic changes is formation of temporary assemblies that are related to receipt of strongly synchronized localized input. Such stimulus-dependent assemblies can be dissolved by spontaneous activity after removal of the stimuli.


Cell Reports ◽  
2017 ◽  
Vol 20 (11) ◽  
pp. 2575-2583 ◽  
Author(s):  
Johanna Sigl-Glöckner ◽  
Michael Brecht

Sign in / Sign up

Export Citation Format

Share Document