neuronal groups
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 14)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Vol 15 ◽  
Author(s):  
Dana Hirsch ◽  
Ayelet Kohl ◽  
Yuan Wang ◽  
Dalit Sela-Donenfeld

Unraveling the inner workings of neural circuits entails understanding the cellular origin and axonal pathfinding of various neuronal groups during development. In the embryonic hindbrain, different subtypes of dorsal interneurons (dINs) evolve along the dorsal-ventral (DV) axis of rhombomeres and are imperative for the assembly of central brainstem circuits. dINs are divided into two classes, class A and class B, each containing four neuronal subgroups (dA1-4 and dB1-4) that are born in well-defined DV positions. While all interneurons belonging to class A express the transcription factor Olig3 and become excitatory, all class B interneurons express the transcription factor Lbx1 but are diverse in their excitatory or inhibitory fate. Moreover, within every class, each interneuron subtype displays its own specification genes and axonal projection patterns which are required to govern the stage-by-stage assembly of their connectivity toward their target sites. Remarkably, despite the similar genetic landmark of each dINs subgroup along the anterior-posterior (AP) axis of the hindbrain, genetic fate maps of some dA/dB neuronal subtypes uncovered their contribution to different nuclei centers in relation to their rhombomeric origin. Thus, DV and AP positional information has to be orchestrated in each dA/dB subpopulation to form distinct neuronal circuits in the hindbrain. Over the span of several decades, different axonal routes have been well-documented to dynamically emerge and grow throughout the hindbrain DV and AP positions. Yet, the genetic link between these distinct axonal bundles and their neuronal origin is not fully clear. In this study, we reviewed the available data regarding the association between the specification of early-born dorsal interneuron subpopulations in the hindbrain and their axonal circuitry development and fate, as well as the present existing knowledge on molecular effectors underlying the process of axonal growth.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bowen Dempsey ◽  
Selvee Sungeelee ◽  
Phillip Bokiniec ◽  
Zoubida Chettouh ◽  
Séverine Diem ◽  
...  

AbstractIt has long been known that orofacial movements for feeding can be triggered, coordinated, and often rhythmically organized at the level of the brainstem, without input from higher centers. We uncover two nuclei that can organize the movements for ingesting fluids in mice. These neuronal groups, IRtPhox2b and Peri5Atoh1, are marked by expression of the pan-autonomic homeobox gene Phox2b and are located, respectively, in the intermediate reticular formation of the medulla and around the motor nucleus of the trigeminal nerve. They are premotor to all jaw-opening and tongue muscles. Stimulation of either, in awake animals, opens the jaw, while IRtPhox2b alone also protracts the tongue. Moreover, stationary stimulation of IRtPhox2b entrains a rhythmic alternation of tongue protraction and retraction, synchronized with jaw opening and closing, that mimics lapping. Finally, fiber photometric recordings show that IRtPhox2b is active during volitional lapping. Our study identifies one of the subcortical nuclei underpinning a stereotyped feeding behavior.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Wen Han Tong ◽  
Samira Abdulai-Saiku ◽  
Ajai Vyas

AbstractArginine vasopressin (AVP) is expressed in both hypothalamic and extra-hypothalamic neurons. The expression and role of AVP exhibit remarkable divergence between these two neuronal populations. Polysynaptic pathways enable these neuronal groups to regulate each other. AVP neurons in the paraventricular nucleus of the hypothalamus increase the production of adrenal stress hormones by stimulating the hypothalamic–pituitary–adrenal axis. Outside the hypothalamus, the medial amygdala also contains robust amounts of AVP. Contrary to the hypothalamic counterpart, the expression of extra-hypothalamic medial amygdala AVP is sexually dimorphic, in that it is preferentially transcribed in males in response to the continual presence of testosterone. Male gonadal hormones typically generate a negative feedback on the neuroendocrine stress axis. Here, we investigated whether testosterone-responsive medial amygdala AVP neurons provide negative feedback to hypothalamic AVP, thereby providing a feedback loop to suppress stress endocrine response during periods of high testosterone secretion. Contrary to our expectation, we found that AVP overexpression within the posterodorsal medial amygdala increased the recruitment of hypothalamic AVP neurons during stress, without affecting the total number of AVP neurons or the number of recently activated neurons following stress. These observations suggest that the effects of testosterone on extra-hypothalamic AVP facilitate stress responsiveness through permissive influence on the recruitment of hypothalamic AVP neurons.


Author(s):  
Limeng Huang ◽  
Yiwen Chen ◽  
Sen Jin ◽  
Li Lin ◽  
Shumin Duan ◽  
...  

AbstractThe amygdala, one of the most studied brain structures, integrates brain-wide heterogeneous inputs and governs multidimensional outputs to control diverse behaviors central to survival, yet how amygdalar input-output neuronal circuits are organized remains unclear. Using a simplified cell-type- and projection-specific retrograde transsynaptic tracing technique, we scrutinized brain-wide afferent inputs of four major output neuronal groups in the amygdalar basolateral complex (BLA) that project to the bed nucleus of the stria terminals (BNST), ventral hippocampus (vHPC), medial prefrontal cortex (mPFC) and nucleus accumbens (NAc), respectively. Brain-wide input-output quantitative analysis unveils that BLA efferent neurons receive a diverse array of afferents with varied input weights and predominant contextual representation. Notably, the afferents received by BNST-, vHPC-, mPFC- and NAc-projecting BLA neurons exhibit virtually identical origins and input weights. These results indicate that the organization of amygdalar BLA input-output neuronal circuits follows the input-dependent and output-independent principles, ideal for integrating brain-wide diverse afferent stimuli to control parallel efferent actions. The data provide the objective basis for improving the virtual reality exposure therapy for anxiety disorders and validate the simplified cell-type- and projection-specific retrograde transsynaptic tracing method.


2021 ◽  
Vol 15 ◽  
Author(s):  
Kris Evers ◽  
Judith Peters ◽  
Mario Senden

Stimulus-induced oscillations and synchrony among neuronal populations in visual cortex are well-established phenomena. Their functional role in cognition are, however, not well-understood. Recent studies have suggested that neural synchrony may underlie perceptual grouping as stimulus-frequency relationships and stimulus-dependent lateral connectivity profiles can determine the success or failure of synchronization among neuronal groups encoding different stimulus elements. We suggest that the same mechanism accounts for collinear facilitation and suppression effects where the detectability of a target Gabor stimulus is improved or diminished by the presence of collinear flanking Gabor stimuli. We propose a model of oscillators which represent three neuronal populations in visual cortex with distinct receptive fields reflecting the target and two flankers, respectively, and whose connectivity is determined by the collinearity of the presented Gabor stimuli. Our model simulations confirm that neuronal synchrony can indeed explain known collinear facilitation and suppression effects for attended and unattended stimuli.


2021 ◽  
Author(s):  
Bowen Dempsey ◽  
Selvee Sungeelee ◽  
Phillip Bokiniec ◽  
Zoubida Chettouh ◽  
Severine Diem ◽  
...  

It has long been known that orofacial movements for feeding can be triggered, coordinated, and often rhythmically organized at the level of the brainstem, without input from higher centers. We uncover two nuclei that can organize the movements for ingesting fluids in mammals. These neuronal groups, defined by unique transcriptional codes and developmental origins, IRtPhox2b and Peri5Atoh1, are located, respectively, in the intermediate reticular formation of the medulla and around the motor nucleus of the trigeminal nerve. They are premotor to all jaw-opening and tongue muscles. Stimulation of either, in awake animals, opens the jaw, while IRtPhox2b alone also protracts the tongue. Moreover, stationary stimulation of IRtPhox2b entrains a rhythmic alternation of tongue protraction and retraction, synchronized with jaw opening and closing, that mimics lapping. Finally, fiber photometric recordings show that IRtPhox2b is active during volitional lapping. Our study identifies one of the long hypothesized subcortical nuclei underpinning a stereotyped feeding behavior.


SLEEP ◽  
2021 ◽  
Author(s):  
Jessica E Owen ◽  
Yan Zhu ◽  
Polina Fenik ◽  
Guanxia Zhan ◽  
Patrick Bell ◽  
...  

Abstract Chronic short sleep (CSS) is prevalent in modern societies and has been proposed as a risk factor for Alzheimer’s disease (AD). In support, short-term sleep loss acutely increases levels of amyloid β (Aβ) and tau in wild type (WT) mice and humans, and sleep disturbances predict cognitive decline in older adults. We have shown that CSS induces injury to and loss of locus coeruleus neurons (LCn), neurons with heightened susceptibility in AD. Yet whether CSS during young adulthood drives lasting Aβ and/or tau changes and/or neural injury later in life in the absence of genetic risk for AD has not been established. Here we examined the impact of CSS exposure in young adult WT mice on late-in-life Aβ and tau changes and neural responses in two AD-vulnerable neuronal groups, LCn and hippocampal CA1 neurons. Twelve months following CSS exposure, CSS-exposed mice evidenced reductions in CA1 neuron counts and volume, spatial memory deficits, CA1 glial activation, and loss of LCn. Aβ42 and hyperphosphorylated tau were increased in the CA1; however, amyloid plaques and tau tangles were not observed. Collectively the findings demonstrate that CSS exposure in the young adult mouse imparts late-in-life neurodegeneration and persistent derangements in amyloid and tau homeostasis. These findings occur in the absence of a genetic predisposition to neurodegeneration and demonstrate for the first time that CSS can induce lasting, significant neural injury consistent with some, but not all, features of late onset AD.


2021 ◽  
Vol 14 ◽  
Author(s):  
Timothy Bellay ◽  
Woodrow L. Shew ◽  
Shan Yu ◽  
Jessica J. Falco-Walter ◽  
Dietmar Plenz

Neuronal avalanches are scale-invariant neuronal population activity patterns in the cortex that emerge in vivo in the awake state and in vitro during balanced excitation and inhibition. Theory and experiments suggest that avalanches indicate a state of cortex that improves numerous aspects of information processing by allowing for the transient and selective formation of local as well as system-wide spanning neuronal groups. If avalanches are indeed involved with information processing, one might expect that single neurons would participate in avalanche patterns selectively. Alternatively, all neurons could participate proportionally to their own activity in each avalanche as would be expected for a population rate code. Distinguishing these hypotheses, however, has been difficult as robust avalanche analysis requires technically challenging measures of their intricate organization in space and time at the population level, while also recording sub- or suprathreshold activity from individual neurons with high temporal resolution. Here, we identify repeated avalanches in the ongoing local field potential (LFP) measured with high-density microelectrode arrays in the cortex of awake nonhuman primates and in acute cortex slices from young and adult rats. We studied extracellular unit firing in vivo and intracellular responses of pyramidal neurons in vitro. We found that single neurons participate selectively in specific LFP-based avalanche patterns. Furthermore, we show in vitro that manipulating the balance of excitation and inhibition abolishes this selectivity. Our results support the view that avalanches represent the selective, scale-invariant formation of neuronal groups in line with the idea of Hebbian cell assemblies underlying cortical information processing.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Sadeem Nabeel Saleem Kbah

Obtaining the computational models for the functioning of the brain gives us a chance to understand the brain functionality thoroughly. This would help the development of better treatments for neurological illnesses and disorders. We created a cortical model using Python language using the Brian simulator. The Brian simulator is specialized in simulating the neuronal connections and synaptic interconnections. The dynamic connection model has multiple parameters in order to ensure an accurate simulation (Bowman, 2016). We concentrated on the connection weights and studied their effect on the interactivity and connectivity of the cortical neurons in the same cortical layer and across multiple layers. As synchronization helps us to measure the degree of correlation between two or more neuronal groups, the synchronization between the neuronal groups, which are connected across layers, is considered. Despite its obvious importance, there are no sufficient studies concerned about the synchronization in the simulated cortical models. Such studies can help in examining the hypothesis and the dynamical behavior of the simulated model. In this paper, we simulated a cortical model and dynamical behavior and then studied the effect of input noise on its internal neuronal networks and their synchronization.


2020 ◽  
Author(s):  
Timothy Bellay ◽  
Woodrow L. Shew ◽  
Shan Yu ◽  
Jessica J. Falco-Walter ◽  
Dietmar Plenz

ABSTRACTNeuronal avalanches are scale-invariant neuronal population activity patterns in cortex that emerge in vivo in the awake state and in vitro during balanced excitation and inhibition. Theory and experiments suggest that avalanches indicate a state of cortex that improves numerous aspects of information processing by allowing for the transient and selective formation of local as well as system-wide spanning neuronal groups. If avalanches are indeed involved with information processing, one might expect that particular single neurons would participate in particular avalanche patterns selectively. Alternatively, all neurons could participate with equal likelihood in each avalanche as would be expected for a population rate code. Distinguishing these hypotheses, however, has been difficult as robust avalanche analysis requires technically challenging measures of their intricate organization in space and time at the population level, while also recording sub- or suprathreshold activity from individual neurons with high temporal resolution. Here we identify repeated avalanches in the ongoing local field potential (LFP) measured with high-density microelectrode arrays in the cortex of awake nonhuman primates and in acute cortex slices from rats. We studied extracellular unit firing in vivo and intracellular responses of pyramidal neurons in vitro. We found that single neurons participate selectively in specific LFP-based avalanche patterns. Furthermore, we show in vitro that manipulating the balance of excitation and inhibition abolishes this selectivity. Our results support the view that avalanches represent the selective, scale-invariant formation of neuronal groups in line with the idea of Hebbian cell assemblies underlying cortical information processing.


Sign in / Sign up

Export Citation Format

Share Document