scholarly journals Diffraction data from aerosolized Coliphage PR772 virus particles imaged with the Linac Coherent Light Source

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Haoyuan Li ◽  
Reza Nazari ◽  
Brian Abbey ◽  
Roberto Alvarez ◽  
Andrew Aquila ◽  
...  

AbstractSingle Particle Imaging (SPI) with intense coherent X-ray pulses from X-ray free-electron lasers (XFELs) has the potential to produce molecular structures without the need for crystallization or freezing. Here we present a dataset of 285,944 diffraction patterns from aerosolized Coliphage PR772 virus particles injected into the femtosecond X-ray pulses of the Linac Coherent Light Source (LCLS). Additional exposures with background information are also deposited. The diffraction data were collected at the Atomic, Molecular and Optical Science Instrument (AMO) of the LCLS in 4 experimental beam times during a period of four years. The photon energy was either 1.2 or 1.7 keV and the pulse energy was between 2 and 4 mJ in a focal spot of about 1.3 μm x 1.7 μm full width at half maximum (FWHM). The X-ray laser pulses captured the particles in random orientations. The data offer insight into aerosolised virus particles in the gas phase, contain information relevant to improving experimental parameters, and provide a basis for developing algorithms for image analysis and reconstruction.

Author(s):  
E. Hemsing ◽  
G. Marcus ◽  
W. M. Fawley ◽  
R. W. Schoenlein ◽  
R. Coffee ◽  
...  

2017 ◽  
Author(s):  
Diling Zhu ◽  
Yanwen Sun ◽  
Donald W. Schafer ◽  
Hongliang Shi ◽  
Justin H. James ◽  
...  

2014 ◽  
Vol 369 (1647) ◽  
pp. 20130500 ◽  
Author(s):  
Bill Pedrini ◽  
Ching-Ju Tsai ◽  
Guido Capitani ◽  
Celestino Padeste ◽  
Mark S. Hunter ◽  
...  

Membrane proteins arranged as two-dimensional crystals in the lipid environment provide close-to-physiological structural information, which is essential for understanding the molecular mechanisms of protein function. Previously, X-ray diffraction from individual two-dimensional crystals did not represent a suitable investigational tool because of radiation damage. The recent availability of ultrashort pulses from X-ray free-electron lasers (XFELs) has now provided a means to outrun the damage. Here, we report on measurements performed at the Linac Coherent Light Source XFEL on bacteriorhodopsin two-dimensional crystals mounted on a solid support and kept at room temperature. By merging data from about a dozen single crystal diffraction images, we unambiguously identified the diffraction peaks to a resolution of 7 Å, thus improving the observable resolution with respect to that achievable from a single pattern alone. This indicates that a larger dataset will allow for reliable quantification of peak intensities, and in turn a corresponding increase in the resolution. The presented results pave the way for further XFEL studies on two-dimensional crystals, which may include pump–probe experiments at subpicosecond time resolution.


2012 ◽  
Vol 100 (12) ◽  
pp. 121107 ◽  
Author(s):  
S. Schorb ◽  
T. Gorkhover ◽  
J. P. Cryan ◽  
J. M. Glownia ◽  
M. R. Bionta ◽  
...  

2015 ◽  
Vol 22 (3) ◽  
pp. 577-583 ◽  
Author(s):  
Gabriel Blaj ◽  
Pietro Caragiulo ◽  
Gabriella Carini ◽  
Sebastian Carron ◽  
Angelo Dragone ◽  
...  

Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a new generation of cameras under development at SLAC, is introduced.


2015 ◽  
Vol 22 (3) ◽  
pp. 612-620 ◽  
Author(s):  
Roberto Alonso-Mori ◽  
Dimosthenis Sokaras ◽  
Diling Zhu ◽  
Thomas Kroll ◽  
Mathieu Chollet ◽  
...  

X-ray free-electron lasers (FELs) have opened unprecedented possibilities to study the structure and dynamics of matter at an atomic level and ultra-fast timescale. Many of the techniques routinely used at storage ring facilities are being adapted for experiments conducted at FELs. In order to take full advantage of these new sources several challenges have to be overcome. They are related to the very different source characteristics and its resulting impact on sample delivery, X-ray optics, X-ray detection and data acquisition. Here it is described how photon-in photon-out hard X-ray spectroscopy techniques can be applied to study the electronic structure and its dynamics of transition metal systems with ultra-bright and ultra-short FEL X-ray pulses. In particular, some of the experimental details that are different compared with synchrotron-based setups are discussed and illustrated by recent measurements performed at the Linac Coherent Light Source.


2015 ◽  
Vol 22 (3) ◽  
pp. 621-625 ◽  
Author(s):  
Joshua J. Turner ◽  
Georgi L. Dakovski ◽  
Matthias C. Hoffmann ◽  
Harold Y. Hwang ◽  
Alex Zarem ◽  
...  

This paper describes the development of new instrumentation at the Linac Coherent Light Source for conducting THz excitation experiments in an ultra high vacuum environment probed by soft X-ray diffraction. This consists of a cantilevered, fully motorized mirror system which can provide 600 kV cm−1electric field strengths across the sample and an X-ray detector that can span the full Ewald sphere with in-vacuum motion. The scientific applications motivated by this development, the details of the instrument, and spectra demonstrating the field strengths achieved using this newly developed system are discussed.


Sign in / Sign up

Export Citation Format

Share Document