scholarly journals Chromosomal-scale de novo genome assemblies of Cynomolgus Macaque and Common Marmoset

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Vasanthan Jayakumar ◽  
Osamu Nishimura ◽  
Mitsutaka Kadota ◽  
Naoki Hirose ◽  
Hiromi Sano ◽  
...  

AbstractCynomolgus macaque (Macaca fascicularis) and common marmoset (Callithrix jacchus) have been widely used in human biomedical research. Long-standing primate genome assemblies used the human genome as a reference for ordering and orienting the assembled fragments into chromosomes. Here we performed de novo genome assembly of these two species without any human genome-based bias observed in the genome assemblies released earlier. We assembled PacBio long reads, and the resultant contigs were scaffolded with Hi-C data, which were further refined based on Hi-C contact maps and alternate de novo assemblies. The assemblies achieved scaffold N50 lengths of 149 Mb and 137 Mb for cynomolgus macaque and common marmoset, respectively. The high fidelity of our assembly is also ascertained by BAC-end concordance in common marmoset. Our assembly of cynomolgus macaque outperformed all the available assemblies of this species in terms of contiguity. The chromosome-scale genome assemblies produced in this study are valuable resources for non-human primate models and provide an important baseline in human biomedical research.

2020 ◽  
Author(s):  
Vasanthan Jayakumar ◽  
Osamu Nishimura ◽  
Mitsutaka Kadota ◽  
Naoki Hirose ◽  
Hiromi Sano ◽  
...  

AbstractCynomolgus macaque (Macaca fascicularis) and common marmoset (Callithrix jacchus) have been widely used in human biomedical research. Their genomes were sequenced and assembled initially using short-read sequences, with the advent of massively parallel sequencing. However, the resulting contig sequences tended to remain fragmentary, and long-standing primate genome assemblies used the human genome as a reference for ordering and orienting the assembled fragments into chromosomes. Here we performed de novo genome assembly of these two species without any human genome-based bias observed in the genome assemblies released earlier. Firstly we assembled PacBio long reads, and the resultant contigs were scaffolded with Hi-C data. The scaffolded sequences obtained were further refined based on assembly results of alternate de novo assemblies and Hi-C contact maps by resolving identified inconsistencies. The final assemblies achieved N50 lengths of 149 Mb and 137 Mb for cynomolgus macaque and common marmoset, respectively, and the numbers of scaffolds longer than 10Mb are equal to their chromosome numbers. The high fidelity of our assembly is ascertained by concordance to the BAC-end read pairs observed for common marmoset, as well as a high resemblance of their karyotypic organization. Our assembly of cynomolgus macaque outperformed all the available assemblies of this species in terms of contiguity. The chromosome-scale genome assemblies produced in this study are valuable resources for non-human primate models and provide an important baseline in human biomedical research.


2019 ◽  
Author(s):  
Prashant S. Hosmani ◽  
Mirella Flores-Gonzalez ◽  
Henri van de Geest ◽  
Florian Maumus ◽  
Linda V. Bakker ◽  
...  

AbstractThe original Heinz 1706 reference genome was produced by a large team of scientists from across the globe from a variety of input sources that included 454 sequences in addition to full-length BACs, BAC and fosmid ends sequenced with Sanger technology. We present here the latest tomato reference genome (SL4.0) assembled de novo from PacBio long reads and scaffolded using Hi-C contact maps. The assembly was validated using Bionano optical maps and 10X linked-read sequences. This assembly is highly contiguous with fewer gaps compared to previous genome builds and almost all scaffolds have been anchored and oriented to the 12 tomato chromosomes. We have found more repeats compared to the previous versions and one of the largest repeat classes identified are the LTR retrotransposons. We also describe updates to the reference genome and annotation since the last publication. The corresponding ITAG4.0 annotation has 4,794 novel genes along with 29,281 genes preserved from ITAG2.4. Most of the updated genes have extensions in the 5’ and 3’ UTRs resulting in doubling of annotated UTRs per gene. The genome and annotation can be accessed using SGN through BLAST database, Pathway database (SolCyc), Apollo, JBrowse genome browser and FTP available at https://solgenomics.net.


2019 ◽  
Author(s):  
Kishwar Shafin ◽  
Trevor Pesout ◽  
Ryan Lorig-Roach ◽  
Marina Haukness ◽  
Hugh E. Olsen ◽  
...  

AbstractPresent workflows for producing human genome assemblies from long-read technologies have cost and production time bottlenecks that prohibit efficient scaling to large cohorts. We demonstrate an optimized PromethION nanopore sequencing method for eleven human genomes. The sequencing, performed on one machine in nine days, achieved an average 63x coverage, 42 Kb read N50, 90% median read identity and 6.5x coverage in 100 Kb+ reads using just three flow cells per sample. To assemble these data we introduce new computational tools: Shasta - a de novo long read assembler, and MarginPolish & HELEN - a suite of nanopore assembly polishing algorithms. On a single commercial compute node Shasta can produce a complete human genome assembly in under six hours, and MarginPolish & HELEN can polish the result in just over a day, achieving 99.9% identity (QV30) for haploid samples from nanopore reads alone. We evaluate assembly performance for diploid, haploid and trio-binned human samples in terms of accuracy, cost, and time and demonstrate improvements relative to current state-of-the-art methods in all areas. We further show that addition of proximity ligation (Hi-C) sequencing yields near chromosome-level scaffolds for all eleven genomes.


2016 ◽  
Author(s):  
Derek M. Bickhart ◽  
Benjamin D. Rosen ◽  
Sergey Koren ◽  
Brian L. Sayre ◽  
Alex R. Hastie ◽  
...  

AbstractThe decrease in sequencing cost and increased sophistication of assembly algorithms for short-read platforms has resulted in a sharp increase in the number of species with genome assemblies. However, these assemblies are highly fragmented, with many gaps, ambiguities, and errors, impeding downstream applications. We demonstrate current state of the art for de novo assembly using the domestic goat (Capra hircus), based on long reads for contig formation, short reads for consensus validation, and scaffolding by optical and chromatin interaction mapping. These combined technologies produced the most contiguous de novo mammalian assembly to date, with chromosome-length scaffolds and only 663 gaps. Our assembly represents a >250-fold improvement in contiguity compared to the previously published C. hircus assembly, and better resolves repetitive structures longer than 1 kb, supporting the most complete repeat family and immune gene complex representation ever produced for a ruminant species.


2020 ◽  
Author(s):  
Elias Oziolor ◽  
Shawn Sullivan ◽  
Hayley Mangelson ◽  
Stephen M. Eacker ◽  
Michael Agostino ◽  
...  

AbstractThe cynomolgus macaque is a non-human primate model, heavily used in biomedical research, but with outdated genomic resources. Here we have used the latest long-read sequencing technologies in order to assemble a fully phased, chromosome-level assembly for the cynomolgus macaque. We have built a hybrid assembly with PacBio, 10x Genomics, and HiC technologies, resulting in a diploid assembly that spans a length of 5.1 Gb with a total of 16,741 contigs (N50 of 0.86Mb) contained in 370 scaffolds (N50 of 138 Mb) positioned on 42 chromosomes (21 homologous pairs). This assembly is highly homologous to former assemblies and identifies novel inversions and provides higher confidence in the genetic architecture of the cynomolgus macaque genome. A demographic estimation is also able to capture the recent genetic bottleneck in the Mauritius population, from which the sequenced individual originates. We offer this resource as an enablement for genetic tools to be built around this important model for biomedical research.


2021 ◽  
Author(s):  
Lauren Coombe ◽  
Janet X Li ◽  
Theodora Lo ◽  
Johnathan Wong ◽  
Vladimir Nikolic ◽  
...  

Background Generating high-quality de novo genome assemblies is foundational to the genomics study of model and non-model organisms. In recent years, long-read sequencing has greatly benefited genome assembly and scaffolding, a process by which assembled sequences are ordered and oriented through the use of long-range information. Long reads are better able to span repetitive genomic regions compared to short reads, and thus have tremendous utility for resolving problematic regions and helping generate more complete draft assemblies. Here, we present LongStitch, a scalable pipeline that corrects and scaffolds draft genome assemblies exclusively using long reads. Results LongStitch incorporates multiple tools developed by our group and runs in up to three stages, which includes initial assembly correction (Tigmint-long), followed by two incremental scaffolding stages (ntLink and ARKS-long). Tigmint-long and ARKS-long are misassembly correction and scaffolding utilities, respectively, previously developed for linked reads, that we adapted for long reads. Here, we describe the LongStitch pipeline and introduce our new long-read scaffolder, ntLink, which utilizes lightweight minimizer mappings to join contigs. LongStitch was tested on short and long-read assemblies of three different human individuals using corresponding nanopore long-read data, and improves the contiguity of each assembly from 2.0-fold up to 304.6-fold (as measured by NGA50 length). Furthermore, LongStitch generates more contiguous and correct assemblies compared to state-of-the-art long-read scaffolder LRScaf in most tests, and consistently runs in under five hours using less than 23GB of RAM. Conclusions Due to its effectiveness and efficiency in improving draft assemblies using long reads, we expect LongStitch to benefit a wide variety of de novo genome assembly projects. The LongStitch pipeline is freely available at https://github.com/bcgsc/longstitch.


2019 ◽  
Author(s):  
Benjamin Istace ◽  
Caroline Belser ◽  
Jean-Marc Aury

ABSTRACTMotivationLong read sequencing and Bionano Genomics optical maps are two techniques that, when used together, make it possible to reconstruct entire chromosome or chromosome arms structure. However, the existing tools are often too conservative and organization of contigs into scaffolds is not always optimal.ResultsWe developed BiSCoT (Bionano SCaffolding COrrection Tool), a tool that post-processes files generated during a Bionano scaffolding in order to produce an assembly of greater contiguity and quality. BiSCoT was tested on a human genome and four publicly available plant genomes sequenced with Nanopore long reads and improved significantly the contiguity and quality of the assemblies. BiSCoT generates a fasta file of the assembly as well as an AGP file which describes the new organization of the input assembly.AvailabilityBiSCoT and improved assemblies are freely available on Github at http://www.genoscope.cns.fr/biscot and Pypi at https://pypi.org/project/biscot/.


2018 ◽  
Author(s):  
Michael Schmid ◽  
Daniel Frei ◽  
Andrea Patrignani ◽  
Ralph Schlapbach ◽  
Jürg E. Frey ◽  
...  

AbstractGenerating a complete, de novo genome assembly for prokaryotes is often considered a solved problem. However, we here show that Pseudomonas koreensis P19E3 harbors multiple, near identical repeat pairs up to 70 kilobase pairs in length. Beyond long repeats, the P19E3 assembly was further complicated by a shufflon region. Its complex genome could not be de novo assembled with long reads produced by Pacific Biosciences’ technology, but required very long reads from the Oxford Nanopore Technology. Another important factor for a full genomic resolution was the choice of assembly algorithm.Importantly, a repeat analysis indicated that very complex bacterial genomes represent a general phenomenon beyond Pseudomonas. Roughly 10% of 9331 complete bacterial and a handful of 293 complete archaeal genomes represented this dark matter for de novo genome assembly of prokaryotes. Several of these dark matter genome assemblies contained repeats far beyond the resolution of the sequencing technology employed and likely contain errors, other genomes were closed employing labor-intense steps like cosmid libraries, primer walking or optical mapping. Using very long sequencing reads in combination with assemblers capable of resolving long, near identical repeats will bring most prokaryotic genomes within reach of fast and complete de novo genome assembly.


Author(s):  
Robert Vaser ◽  
Mile Šikić

We present new methods for the improvement of long-read de novo genome assembly incorporated into a straightforward tool called Raven (https://github.com/lbcb-sci/raven). Compared with other assemblers, Raven is one of two fastest, it reconstructs the sequenced genome in the least amount of fragments, has better or comparable accuracy, and maintains similar performance for various genomes. Raven takes 500 CPU hours to assemble a 44x human genome dataset in only 259 fragments.


Sign in / Sign up

Export Citation Format

Share Document