scholarly journals Modulation of the Neuregulin 1/ErbB system after skeletal muscle denervation and reinnervation

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Michela Morano ◽  
Giulia Ronchi ◽  
Valentina Nicolò ◽  
Benedetta Elena Fornasari ◽  
Alessandro Crosio ◽  
...  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Michela Morano ◽  
Giulia Ronchi ◽  
Valentina Nicolò ◽  
Benedetta Elena Fornasari ◽  
Alessandro Crosio ◽  
...  

2016 ◽  
Vol 95 ◽  
pp. 168-178 ◽  
Author(s):  
Renzo Mancuso ◽  
Anna Martínez-Muriana ◽  
Tatiana Leiva ◽  
David Gregorio ◽  
Lorena Ariza ◽  
...  

Development ◽  
1993 ◽  
Vol 117 (4) ◽  
pp. 1409-1420 ◽  
Author(s):  
R. Moore ◽  
F.S. Walsh

The spatiotemporal distribution of M-cadherin mRNA has been determined by in situ hybridization in the mouse embryo and in adult skeletal muscle following experimental regeneration and denervation. M-cadherin mRNA is highly tissue specific and is found only in developing skeletal muscle. In contrast, N-cadherin mRNA has a broader tissue distribution in the embryo, being found on both neural elements and skeletal and cardiac muscle. M-cadherin is expressed in the myotomes shortly after they form, along with the myogenic regulatory factor myogenin. M-cadherin is expressed in muscles derived from the myotomes and is detected in forelimb bud precursor cells at embryonic day 11.5. In the latter case M-cadherin expression appears co-ordinately with that of myogenin and cardiac alpha-actin. Shortly before birth, M-cadherin expression is down regulated. M-cadherin can, however, be re-expressed following experimental regeneration of skeletal muscle. Here M-cadherin is transiently expressed on regenerating myoblasts but not myotubes. Following muscle denervation no evidence was found for re-expression of M-cadherin under conditions where there was strong expression of the nicotinic acetylcholine receptor on myofibres. The highly specific tissue distribution and unique developmental profile distinguishes M-cadherin from other cadherins and suggests a role in cell surface events during early myogenesis.


1995 ◽  
Vol 269 (2) ◽  
pp. R437-R444 ◽  
Author(s):  
C. H. Lang

Previous studies have demonstrated that in vivo injection of lipopolysaccharide (LPS) acutely stimulates glucose uptake (GU) in skeletal muscle. The purpose of the present study was to determine whether this enhanced GU is neurally mediated. In the first group of rats, a unilateral sciatic nerve transection was performed 3 h before injection of LPS, and in vivo GU was assessed using 2-[14C]deoxy-D-glucose 40 min after LPS injection. At this time, LPS-treated rats were hyperglycemic (12 mM), and insulin levels were not different from control rats. In the innervated leg, LPS increased GU 43-228%, depending on the muscle type. In contrast, LPS failed to increase GU in muscles from the denervated limb. In other experiments, somatostatin was infused to produce an insulinopenic condition before the injection of LPS. Despite insulinopenia, muscle GU was still increased by LPS. In control rats, in which the euglycemic hyperinsulinemic clamp technique was used, acute muscle denervation was shown to impair insulin-mediated GU in the presence of pharmacological, but not physiological, insulin levels. Non-insulin-mediated GU (NIMGU) was assessed in rats that were insulinopenic and hyperglycemic. In innervated muscle, NIMGU was increased 56-126 and 118-145% when the plasma glucose was elevated to 9 and 12 mM, respectively. In contrast, hyperglycemia-induced increases in NIMGU were attenuated in denervated muscle. These data demonstrate that 1) the early LPS-induced stimulation of muscle GU is mediated via a non-insulin-mediated pathway and 2) the LPS-induced increase in NIMGU in muscle is neurally mediated.


Biochemistry ◽  
2001 ◽  
Vol 40 (17) ◽  
pp. 5306-5312 ◽  
Author(s):  
Larry Fromm ◽  
Steven J. Burden

PLoS Genetics ◽  
2019 ◽  
Vol 15 (3) ◽  
pp. e1007857 ◽  
Author(s):  
Yun Liu ◽  
Yoshie Sugiura ◽  
Fujun Chen ◽  
Kuo-Fen Lee ◽  
Qiaohong Ye ◽  
...  

2019 ◽  
Vol 316 (3) ◽  
pp. C456-C461 ◽  
Author(s):  
Haiming Liu ◽  
LaDora V. Thompson

Unilateral denervation is widely used for studies investigating mechanisms of muscle atrophy. The “contralateral-innervated muscle” is a commonly used experimental control in denervation studies. It is not clear whether denervation unilaterally alters the proteolytic system in the contralateral-innervated muscles. Therefore, the objectives of this rapid report are 1) to determine whether unilateral denervation has an effect on the proteolytic system in contralateral-innervated control muscles and 2) to identify the changes in proteasome properties in denervated muscles after 7- and 14-day tibial nerve transection with either the contralateral-innervated muscles or intact muscles from nonsurgical mice used as the experimental control. In the contralateral-innervated muscles after 7 and 14 days of nerve transection, the proteasome activities and content are significantly increased compared with muscles from nonsurgical mice. When the nonsurgical mice are used as the experimental control, a robust increase in proteasome properties is found in the denervated muscles. This robust increase in proteasome properties is eliminated when the contralateral-innervated muscles are the experimental control. In conclusion, there is a crossover effect from unilateral denervation on proteolytic parameters. As a result, the crossover effect on contralateral-innervated muscles must be considered when an experimental control is selected in a denervation study.


2005 ◽  
Vol 48 (4) ◽  
pp. 541-548 ◽  
Author(s):  
Wilton Marlindo Santana Nunes ◽  
Maria Alice Rostom de Mello

This study analyzed the local and systemic effects of immobilization by denervation of the skeletal muscle on glucose metabolism. The rats were submitted to section of the right paw sciatic nerve. A reduction was observed in glucose uptake by the isolated soleus muscle of the denervated paw after 3 and 7 days, but not after 28 days in relation to the control animals. There was no difference after 3 and 7 days in glucose uptake by the soleus muscle of the opposite intact paw in relation to the control. There was increased glucose uptake in the same paw 28 days after denervation. The rate of glucose removal in response to exogenous insulin after 28 days of denervation was significantly higher than in control animals and those observed after 3 and 7 days of denervation. These results suggest that immobilization by denervation interfered not only in glucose metabolism in the skeletal muscle involved but also in other tissues.


Sign in / Sign up

Export Citation Format

Share Document