scholarly journals Interannual variability of leaf area index of an evergreen conifer stand was affected by carry-over effects from recent climate conditions

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Akihiro Sumida ◽  
Tsutomu Watanabe ◽  
Tomiyasu Miyaura
1990 ◽  
Vol 6 (2) ◽  
pp. 135-149 ◽  
Author(s):  
J. W. Leverenz ◽  
T. M. Hinckley

2017 ◽  
Vol 23 (10) ◽  
pp. 4133-4146 ◽  
Author(s):  
Chongya Jiang ◽  
Youngryel Ryu ◽  
Hongliang Fang ◽  
Ranga Myneni ◽  
Martin Claverie ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Xuezhen Zhang ◽  
Qiuhong Tang

Using the coupled WRF-Noah model, we conducted two experiments to investigate impacts of the interannual variability of leaf area index (LAI) on the surface air temperature (SAT) in eastern China. The Moderate Resolution Imaging Spectroradiometer (MODIS) observed dynamic LAI data from 2002 to 2009 were used in one modeling experiment, and the climatological seasonal cycle of the MODIS LAI was used in the other experiment. The results show that the use of dynamic LAI improves model performance. Compared with the use of climatological LAI, the use of dynamic LAI may reduce the warm (cool) bias in the years with large positive (negative) LAI anomalies. The reduction of the warm bias results from the modeled cooling effect of LAI increase through reducing canopy resistance, promoting transpiration, and decreasing sensible heat flux. Conversely, the reduction of cool bias is a result of the warming effect of negative anomaly of LAI. The use of dynamic LAI can improve model performance in summer and to a lesser extent, spring and autumn. Moreover, the dynamic LAI exerts a detectable influence on SAT in the WRF model when the LAI anomaly is at least 20% of the climatological LAI.


2014 ◽  
Vol 15 (1) ◽  
pp. 489-503 ◽  
Author(s):  
Jatin Kala ◽  
Mark Decker ◽  
Jean-François Exbrayat ◽  
Andy J. Pitman ◽  
Claire Carouge ◽  
...  

Abstract Leaf area index (LAI), the total one-sided surface area of leaf per ground surface area, is a key component of land surface models. The authors investigate the influence of differing, plausible LAI prescriptions on heat, moisture, and carbon fluxes simulated by the Community Atmosphere Biosphere Land Exchange version 1.4b (CABLEv1.4b) model over the Australian continent. A 15-member ensemble monthly LAI dataset is generated using the Moderate Resolution Imaging Spectroradiometer (MODIS) LAI product and gridded observations of temperature and precipitation. Offline simulations lasting 29 years (1980–2008) are carried out at 25-km resolution with the composite monthly means from the MODIS LAI product (control simulation) and compared with simulations using each of the 15-member ensemble monthly varying LAI datasets generated. The imposed changes in LAI did not strongly influence the sensible and latent fluxes, but the carbon fluxes were more strongly affected. Croplands showed the largest sensitivity in gross primary production with differences ranging from −90% to 60%. Plant function types (PFTs) with high absolute LAI and low interannual variability, such as evergreen broadleaf trees, showed the least response to the different LAI prescriptions, while those with lower absolute LAI and higher interannual variability, such as croplands, were more sensitive. The authors show that reliance on a single LAI prescription may not accurately reflect the uncertainty in the simulation of terrestrial carbon fluxes, especially for PFTs with high interannual variability. The study highlights that accurate representation of LAI in land surface models is key to the simulation of the terrestrial carbon cycle. Hence, this will become critical in quantifying the uncertainty in future changes in primary production.


Sign in / Sign up

Export Citation Format

Share Document