scholarly journals Cell cycle reentry triggers hyperploidization and synaptic dysfunction followed by delayed cell death in differentiated cortical neurons

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
E. Barrio-Alonso ◽  
A. Hernández-Vivanco ◽  
C. C. Walton ◽  
G. Perea ◽  
J. M. Frade
2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Viktorija Juric ◽  
Lance Hudson ◽  
Joanna Fay ◽  
Cathy E. Richards ◽  
Hanne Jahns ◽  
...  

AbstractActivation of cyclin-dependent kinases (CDKs) contributes to the uncontrolled proliferation of tumour cells. Genomic alterations that lead to the constitutive activation or overexpression of CDKs can support tumourigenesis including glioblastoma (GBM), the most common and aggressive primary brain tumour in adults. The incurability of GBM highlights the need to discover novel and more effective treatment options. Since CDKs 2, 7 and 9 were found to be overexpressed in GBM, we tested the therapeutic efficacy of two CDK inhibitors (CKIs) (CYC065 and THZ1) in a heterogeneous panel of GBM patient-derived cell lines (PDCLs) cultured as gliomaspheres, as preclinically relevant models. CYC065 and THZ1 treatments suppressed invasion and induced viability loss in the majority of gliomaspheres, irrespective of the mutational background of the GBM cases, but spared primary cortical neurons. Viability loss arose from G2/M cell cycle arrest following treatment and subsequent induction of apoptotic cell death. Treatment efficacies and treatment durations required to induce cell death were associated with proliferation velocities, and apoptosis induction correlated with complete abolishment of Mcl-1 expression, a cell cycle-regulated antiapoptotic Bcl-2 family member. GBM models generally appeared highly dependent on Mcl-1 expression for cell survival, as demonstrated by pharmacological Mcl-1 inhibition or depletion of Mcl-1 expression. Further analyses identified CKI-induced Mcl-1 loss as a prerequisite to establish conditions at which the BH3-only protein Bim can efficiently induce apoptosis, with cellular Bim amounts strongly correlating with treatment efficacy. CKIs reduced proliferation and promoted apoptosis also in chick embryo xenograft models of primary and recurrent GBM. Collectively, these studies highlight the potential of these novel CKIs to suppress growth and induce cell death of patient-derived GBM cultures in vitro and in vivo, warranting further clinical investigation.


1999 ◽  
Vol 19 (14) ◽  
pp. 5932-5941 ◽  
Author(s):  
James J. Velier ◽  
Julie A. Ellison ◽  
Kristine K. Kikly ◽  
Patricia A. Spera ◽  
Frank C. Barone ◽  
...  

2018 ◽  
Author(s):  
Chaska C Walton ◽  
Wei Zhang ◽  
Iris Patiño-Parrado ◽  
Estíbaliz Barrio-Alonso ◽  
Juan-José Garrido ◽  
...  

SUMMARYMitotic activity associated to neuron cell-death instead of cell-division is reported in neurodegenerative diseases. However, why mitotic activity can take place in supposedly postmitotic neurons and how it is associated to cell-death remains largely unexplained. To address these questions, we have studied the response of primary neurons to oncogenic deregulation using a fusion protein based on truncated Cyclin E and Cdk2. Oncogenic Cyclin E/Cdk2 elicits mitotic checkpoint signaling, resulting in cell-cycle arrest and cell-death. However, as in mitotic cells, checkpoint suppression enables oncogenic cell-cycle progression and neuronal division. Further, neurons actively adapt to the cell-cycle by losing and reforming the axon initial segment, which integrates synaptic inputs to sustain action potentials. We conclude that neurons are mitotic cells in a reversible quiescent-like state, which is falsely portrayed as irreversible by mitotic checkpoints. In extension, neuronal death in lieu of cell-division reflects oncosuppressive checkpoint signaling.


2021 ◽  
Vol 118 (12) ◽  
pp. e2011876118
Author(s):  
Stefania Ippati ◽  
Yuanyuan Deng ◽  
Julia van der Hoven ◽  
Celine Heu ◽  
Annika van Hummel ◽  
...  

Neurons are postmitotic cells. Reactivation of the cell cycle by neurons has been reported in Alzheimer’s disease (AD) brains and models. This gave rise to the hypothesis that reentering the cell cycle renders neurons vulnerable and thus contributes to AD pathogenesis. Here, we use the fluorescent ubiquitination-based cell cycle indicator (FUCCI) technology to monitor the cell cycle in live neurons. We found transient, self-limited cell cycle reentry activity in naive neurons, suggesting that their postmitotic state is a dynamic process. Furthermore, we observed a diverse response to oligomeric amyloid-β (oAβ) challenge; neurons without cell cycle reentry activity would undergo cell death without activating the FUCCI reporter, while neurons undergoing cell cycle reentry activity at the time of the oAβ challenge could maintain and increase FUCCI reporter signal and evade cell death. Accordingly, we observed marked neuronal FUCCI positivity in the brains of human mutant Aβ precursor protein transgenic (APP23) mice together with increased neuronal expression of the endogenous cell cycle control protein geminin in the brains of 3-mo-old APP23 mice and human AD brains. Taken together, our data challenge the current view on cell cycle in neurons and AD, suggesting that pathways active during early cell cycle reentry in neurons protect from Aβ toxicity.


Sign in / Sign up

Export Citation Format

Share Document