scholarly journals p27 small interfering RNA induces cell death through elevating cell cycle activity in cultured cortical neurons: a proof-of-concept study

2006 ◽  
Vol 63 (24) ◽  
pp. 3090-3090
Author(s):  
H. Akashiba ◽  
N. Matsuki ◽  
N. Nishiyama
2010 ◽  
Vol 112 (5) ◽  
pp. 1155-1163 ◽  
Author(s):  
Sulpicio G. Soriano ◽  
Qian Liu ◽  
Jing Li ◽  
Jia-Ren Liu ◽  
Xiao Hui Han ◽  
...  

Background Prolonged exposure to ketamine results in accelerated neurodegeneration and neurocognitive deficits in the neonatal rats. Experimental models of neurodegeneration have implicated reentry of postmitotic neurons into the cell cycle, leading to cell death. The authors hypothesize that the ketamine-induced neuroapoptosis is partially due to aberrant cycle cell reentry. To explore this hypothesis, the authors characterized the effect of ketamine on the cell cycle signaling pathway in the developing rodent brain in vivo and in vitro. Methods Postnatal day 7 rat pups and primary neurons were used for the experiments. Each rat pup received five intraperitoneal doses of either saline or ketamine (5, 10, and 20 mg/kg/dose) at 90-min intervals over 6 h. Primary neurons were exposed to varying concentrations of ketamine to determine the dose and duration effects. The expression of cell cycle proteins (cyclin D1, cyclin-dependent kinase 4, and E2F1), Bcl2-interacting mediator of cell death (Bim), and activated caspase-3 was determined. The effect of cyclin D1 knockdown by small interfering RNA was also examined in primary neurons incubated in ketamine. Results Ketamine mediated a dose- and time-dependent increase in expression of cell cycle proteins and activated caspase-3. Cyclin D1, cyclin-dependent kinase 4, E2F1, Bim, and cleaved caspase-3 expression increased at 12 h and peaked at 24 h in vitro. Knockdown of cyclin D1 by small interfering RNA attenuated Bim and cleaved caspase-3 expression. Conclusion These findings support a model in which ketamine induces aberrant cell cycle reentry, leading to apoptotic cell death in the developing rat brain.


2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Viktorija Juric ◽  
Lance Hudson ◽  
Joanna Fay ◽  
Cathy E. Richards ◽  
Hanne Jahns ◽  
...  

AbstractActivation of cyclin-dependent kinases (CDKs) contributes to the uncontrolled proliferation of tumour cells. Genomic alterations that lead to the constitutive activation or overexpression of CDKs can support tumourigenesis including glioblastoma (GBM), the most common and aggressive primary brain tumour in adults. The incurability of GBM highlights the need to discover novel and more effective treatment options. Since CDKs 2, 7 and 9 were found to be overexpressed in GBM, we tested the therapeutic efficacy of two CDK inhibitors (CKIs) (CYC065 and THZ1) in a heterogeneous panel of GBM patient-derived cell lines (PDCLs) cultured as gliomaspheres, as preclinically relevant models. CYC065 and THZ1 treatments suppressed invasion and induced viability loss in the majority of gliomaspheres, irrespective of the mutational background of the GBM cases, but spared primary cortical neurons. Viability loss arose from G2/M cell cycle arrest following treatment and subsequent induction of apoptotic cell death. Treatment efficacies and treatment durations required to induce cell death were associated with proliferation velocities, and apoptosis induction correlated with complete abolishment of Mcl-1 expression, a cell cycle-regulated antiapoptotic Bcl-2 family member. GBM models generally appeared highly dependent on Mcl-1 expression for cell survival, as demonstrated by pharmacological Mcl-1 inhibition or depletion of Mcl-1 expression. Further analyses identified CKI-induced Mcl-1 loss as a prerequisite to establish conditions at which the BH3-only protein Bim can efficiently induce apoptosis, with cellular Bim amounts strongly correlating with treatment efficacy. CKIs reduced proliferation and promoted apoptosis also in chick embryo xenograft models of primary and recurrent GBM. Collectively, these studies highlight the potential of these novel CKIs to suppress growth and induce cell death of patient-derived GBM cultures in vitro and in vivo, warranting further clinical investigation.


2007 ◽  
Vol 21 (10) ◽  
pp. 2334-2349 ◽  
Author(s):  
Masashi Takano ◽  
Zhenxiao Lu ◽  
Tomoko Goto ◽  
Luca Fusi ◽  
Jenny Higham ◽  
...  

Abstract Differentiation of human endometrial stromal cells (HESCs) into decidual cells is associated with induction of the forkhead transcription factor forkhead box O1A (FOXO1). We performed a genomic screen to identify decidua-specific genes under FOXO1 control. Primary HESCs were transfected with small interfering RNA targeting FOXO1 or with nontargeting control small interfering RNA before treatment with a cAMP analogue and the progestin, medroxyprogesterone acetate for 72 h. Total RNA was processed for whole genome analysis using high-density oligonucleotide arrays. We identified 3405 significantly regulated genes upon decidualization of HESCs, 507 (15.3%) of which were aberrantly expressed upon FOXO1 knockdown. Among the most up-regulated FOXO1-dependent transcriptional targets were WNT signaling-related genes (WNT4, WNT16 ), the insulin receptor (INSR), differentiation markers (PRL, IGFBP1, and LEFTY2), and the cyclin-dependent kinase inhibitor p57Kip2 (CDKN1C). Analysis of FOXO1-dependent down-regulated genes uncovered several factors involved in cell cycle regulation, including CCNB1, CCNB2, MCM5, CDC2 and NEK2. Cell viability assay and cell cycle analysis demonstrated that FOXO1 silencing promotes proliferation of differentiating HESCs. Using a glutathione-S-transferase pull-down assay, we confirmed that FOXO1 interacts with progesterone receptor, irrespectively of the presence of ligand. In agreement, knockdown of PR disrupted the regulation of FOXO1 target genes involved in differentiation (IGFBP1, PRL, and WNT4) and cell cycle regulation (CDKN1, CCNB2 and CDC2) in HESCs treated with either cAMP plus medroxyprogesterone acetate or with cAMP alone. Together, the data demonstrate that FOXO1 engages in transcriptional cross talk with progesterone receptor to coordinate cell cycle regulation and differentiation of HESCs.


2002 ◽  
Vol 949 (1-2) ◽  
pp. 197-201 ◽  
Author(s):  
Tatsurou Yagami ◽  
Keiichi Ueda ◽  
Kenji Asakura ◽  
Satoshi Hata ◽  
Takayuki Kuroda ◽  
...  

Endocrinology ◽  
2008 ◽  
Vol 149 (6) ◽  
pp. 3046-3053 ◽  
Author(s):  
Dariush Mokhtari ◽  
Jason W. Myers ◽  
Nils Welsh

The aim of the present investigation was to characterize the role of the MAPK kinase kinase-1 (MEKK-1) in stress-induced cell death of insulin producing cells. We observed that transient overexpression of the wild type MEKK-1 protein in the insulin-producing cell lines RIN-5AH and βTC-6 increased c-Jun N-terminal kinase (JNK) phosphorylation and augmented cell death induced by diethylenetriamine/nitroso-1-propylhydrazino)-1-propanamine (DETA/NO), streptozotocin (STZ), and hydrogen peroxide (H2O2). Furthermore, DETA/NO or STZ induced a rapid threonine phosphorylation of MEKK-1. Silencing of MEKK-1 gene expression in βTC-6 and human dispersed islet cells, using in vitro-generated diced small interfering RNA, resulted in protection from DETA/NO, STZ, H2O2, and tunicamycin induced cell death. Moreover, in DETA/NO-treated cells diced small interfering RNA-mediated down-regulation of MEKK-1 resulted in decreased activation of JNK but not p38 and ERK. Inhibition of JNK by treatment with SP600125 partially protected against DETA/NO- or STZ-induced cell death. In summary, our results support an essential role for MEKK-1 in JNK activation and stress-induced β-cell death. Increased understanding of the signaling pathways that augment or diminish β-cell MEKK-1 activity may aid in the generation of novel therapeutic strategies in the treatment of type 1 diabetes.


Sign in / Sign up

Export Citation Format

Share Document