scholarly journals A Computational Design Framework for Efficient, Fabrication Error-Tolerant, Planar THz Diffractive Optical Elements

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sourangsu Banerji ◽  
Berardi Sensale-Rodriguez
2015 ◽  
Vol 54 (4) ◽  
pp. 045102 ◽  
Author(s):  
Jian Wang ◽  
Fang Zhang ◽  
Qiang Song ◽  
Aijun Zeng ◽  
Jing Zhu ◽  
...  

2021 ◽  
Vol 13 (4) ◽  
pp. 88
Author(s):  
Mateusz Surma ◽  
Mateusz Kaluza ◽  
Patrycja Czerwińska ◽  
Paweł Komorowski ◽  
Agnieszka Siemion

Terahertz (THz) optics often encounters the problem of small f number values (elements have relatively small diameters comparing to focal lengths). The need to redirect the THz beam out of the optical axis or form particular intensity distributions resulted in the application of iterative holographic methods to design THz diffractive elements. Elements working on-axis do not encounter significant improvement while using iterative holographic methods, however, for more complicated distributions the difference becomes meaningful. Here, we propose a totally different approach to design THz holograms, utilizing a neural network based algorithm, suitable also for complicated distributions. Full Text: PDF ReferencesY. Tao, A. Fitzgerald and V. Wallace, "Non-Contact, Non-Destructive Testing in Various Industrial Sectors with Terahertz Technology", Sensors, 20(3), 712 (2020). CrossRef J. O'Hara, S. Ekin, W. Choi and I. Song, "A Perspective on Terahertz Next-Generation Wireless Communications", Technologies, 7(2), 43 (2019). CrossRef L. Yu et al., "The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges", RSC Advances, 9(17), 9354 (2019). CrossRef A. Siemion, "The Magic of Optics—An Overview of Recent Advanced Terahertz Diffractive Optical Elements", Sensors, 21(1), 100 (2020). CrossRef A. Siemion, "Terahertz Diffractive Optics—Smart Control over Radiation", J. Infrared Millim. Terahertz Waves, 40(5), 477 (2019). CrossRef M. Surma, I. Ducin, P. Zagrajek and A. Siemion, "Sub-Terahertz Computer Generated Hologram with Two Image Planes", Appl. Sci., 9(4), 659 (2019). CrossRef S. Banerji and B.Sensale-Rodriguez, "A Computational Design Framework for Efficient, Fabrication Error-Tolerant, Planar THz Diffractive Optical Elements", Sci. Rep., 9(1), 5801 (2019). CrossRef J. Sun and F. Hu, "Three-dimensional printing technologies for terahertz applications: A review", Int. J. RF. Microw. C. E., 30(1) (2020). CrossRef E. Castro-Camus, M. Koch and A. I. Hernandez-Serrano, "Additive manufacture of photonic components for the terahertz band", J. Appl. Phys., 127(21), 210901 (2020). CrossRef https://community.wolfram.com/groups/-/m/t/2028026?p_%20479%20p_auth=blBtLb5d DirectLink P. Komorowski, et al., "Three-focal-spot terahertz diffractive optical element-iterative design and neural network approach", Opt. Express, 29(7), 11243-11253 (2021) CrossRef M. Sypek, "Light propagation in the Fresnel region. New numerical approach", Opt. Commun., 116(1-3), 43 (1995). CrossRef


2021 ◽  
Vol 11 (14) ◽  
pp. 6246
Author(s):  
Paweł Komorowski ◽  
Patrycja Czerwińska ◽  
Mateusz Kaluza ◽  
Mateusz Surma ◽  
Przemysław Zagrajek ◽  
...  

Recently, one of the most commonly discussed applications of terahertz radiation is wireless telecommunication. It is believed that the future 6G systems will utilize this frequency range. Although the exact technology of future telecommunication systems is not yet known, it is certain that methods for increasing their bandwidth should be investigated in advance. In this paper, we present the diffractive optical elements for the frequency division multiplexing of terahertz waves. The structures have been designed as a combination of a binary phase grating and a converging diffractive lens. The grating allows for differentiating the frequencies, while the lens assures separation and focusing at the finite distance. Designed structures have been manufactured from polyamide PA12 using the SLS 3D printer and verified experimentally. Simulations and experimental results are shown for different focal lengths. Moreover, parallel data transmission is shown for two channels of different carrier frequencies propagating in the same optical path. The designed structure allowed for detecting both signals independently without observable crosstalk. The proposed diffractive elements can work in a wide range of terahertz and sub-terahertz frequencies, depending on the design assumptions. Therefore, they can be considered as an appealing solution, regardless of the band finally used by the future telecommunication systems.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexander Goncharsky ◽  
Anton Goncharsky ◽  
Dmitry Melnik ◽  
Svyatoslav Durlevich

AbstractThis paper focuses on the development of flat diffractive optical elements (DOEs) for protecting banknotes, documents, plastic cards, and securities against counterfeiting. A DOE is a flat diffractive element whose microrelief, when illuminated by white light, forms a visual image consisting of several symbols (digits or letters), which move across the optical element when tilted. The images formed by these elements are asymmetric with respect to the zero order. To form these images, the microrelief of a DOE must itself be asymmetric. The microrelief has a depth of ~ 0.3 microns and is shaped with an accuracy of ~ 10–15 nm using electron-beam lithography. The DOEs developed in this work are securely protected against counterfeiting and can be replicated hundreds of millions of times using standard equipment meant for the mass production of relief holograms.


Author(s):  
Christian Kern ◽  
Uwe Speck ◽  
Rainer Riesenberg ◽  
Carina Reble ◽  
Georg Khazaka ◽  
...  

2011 ◽  
Author(s):  
Jorge Castro-Ramos ◽  
Gabriel Gordiano-Alvarado ◽  
Carlos M. Ortiz-Lima ◽  
M. Antonio De-Jesus-Ortiz ◽  
Sergio Vazquez-Montiel ◽  
...  

Author(s):  
Roberto Fernandez ◽  
Sergi Gallego ◽  
Francisco J. Martinez ◽  
Andres Marquez ◽  
Inmaculada Pascual ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document