scholarly journals Comparative transcriptome analysis reveals the genetic basis of coat color variation in Pashmina goat

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Basharat Bhat ◽  
Ashutosh Singh ◽  
Zaffar Iqbal ◽  
Jai K. Kaushik ◽  
A. R. Rao ◽  
...  
PLoS ONE ◽  
2014 ◽  
Vol 9 (9) ◽  
pp. e108200 ◽  
Author(s):  
Yanliang Jiang ◽  
Songhao Zhang ◽  
Jian Xu ◽  
Jianxin Feng ◽  
Shahid Mahboob ◽  
...  

Toxins ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 761
Author(s):  
Shanmei Zou

Nassarius has caused serious people poisoning and death incident as a popular food due to tetrodotoxin (TTX) accumulation in their body. Understanding the genetic basis of tetrodotoxin (TTX) transformation and resistance in animals could lead to significant insights into adaptive evolution to toxins and toxin poisoning cures in medicine. Here we performed comparative transcriptome analysis for toxic and non-toxic communities in Nassarius succinctus and Nassarius variciferus to reveal their genetic expression and mutation patterns. For both species, the cellular and metabolic process, and binding and catalytic activity accounted for the top classification categories, and the toxic communities generally produced more up-regulated genes than non-toxic communities. Most unigenes and different expression genes were related to disease, e.g., heat shock protein and tissue factor pathway inhibitors, which involve detoxification and coagulation. In mutation levels, the sodium channel gene of N. succinctus had one amino acid mutation “L”, which is different from that of other animals. In conclusion, the comparative transcriptome analysis of different species and populations provided an important genetic basis for adaptive evolution to toxins, health and toxin poisoning cure research for TTX in marine gastropoda mollusk. Future studies will focus on the action mechanism of the important functional gene for TTX accumulation and resistance.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiuling Li ◽  
Jizheng Fan ◽  
Shuming Luo ◽  
Ling Yin ◽  
Hongying Liao ◽  
...  

Abstract Background Paphiopedilum hirsutissimum is a member of Orchidaceae family that is famous for its ornamental value around the globe, it is vulnerable due to over-exploitation and was listed in Appendix I of the Convention on International Trade in Endangered Species of Wild Fauna and Flora, which prevents its trade across borders. Variation in flower color that gives rise to different flower patterns is a major trait contributing to its high ornamental value. However, the molecular mechanism underlying color formation in P. hirsutissimum still remains unexplored. In the present study, we exploited natural variation in petal and labellum color of Paphiopedilum plants and used comparative transcriptome analysis as well as pigment measurements to explore the important genes, metabolites and regulatory pathways linked to flower color variation in P. hirsutissimum. Result We observed that reduced anthocyanin and flavonoid contents along with slightly higher carotenoids are responsible for albino flower phenotype. Comparative transcriptome analysis identified 3287 differentially expressed genes (DEGs) among normal and albino labellum, and 3634 DEGs between normal and albino petals. Two genes encoding for flavanone 3-hydroxylase (F3H) and one gene encoding for chalcone synthase (CHS) were strongly downregulated in albino labellum and petals compared to normal flowers. As both F3H and CHS catalyze essentially important steps in anthocyanin biosynthesis pathway, downregulation of these genes is probably leading to albino flower phenotype via down-accumulation of anthocyanins. However, we observed the downregulation of major carotenoid biosynthesis genes including VDE, NCED and ABA2 which was inconsistent with the increased carotenoid accumulation in albino flowers, suggesting that carotenoid accumulation was probably controlled at post-transcriptional or translational level. In addition, we identified several key transcription factors (MYB73, MYB61, bHLH14, bHLH106, MADS-SOC1, AP2/ERF1, ERF26 and ERF87) that may regulate structural genes involved in flower color formation in P. hirsutissimum. Importantly, over-expression of some of these candidate TFs increased anthocyanin accumulation in tobacco leaves which provided important evidence for the role of these TFs in flower color formation probably via regulating key structural genes of the anthocyanin pathway. Conclusion The genes identified here could be potential targets for breeding P. hirsutissimum with different flower color patterns by manipulating the anthocyanin and carotenoid biosynthesis pathways.


Sign in / Sign up

Export Citation Format

Share Document