scholarly journals Prognostic Modeling and Prevention of Diabetes Using Machine Learning Technique

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sajida Perveen ◽  
Muhammad Shahbaz ◽  
Karim Keshavjee ◽  
Aziz Guergachi

Abstract Stratifying individuals at risk for developing diabetes could enable targeted delivery of interventional programs to those at highest risk, while avoiding the effort and costs of prevention and treatment in those at low risk. The objective of this study was to explore the potential role of a Hidden Markov Model (HMM), a machine learning technique, in validating the performance of the Framingham Diabetes Risk Scoring Model (FDRSM), a well-respected prognostic model. Can HMM predict 8-year risk of developing diabetes in an individual effectively? To our knowledge, no study has attempted use of HMM to validate the performance of FDRSM. We used Electronic Medical Record (EMR) data, of 172,168 primary care patients to derive the 8-year risk of developing diabetes in an individual using HMM. The Area Under Receiver Operating Characteristic Curve (AROC) in our study sample of 911 individuals for whom all risk factors and follow up data were available is 86.9% compared to AROCs of 78.6% and 85% reported in a previously conducted validation study of FDRSM in the same Canadian population and the Framingham study respectively. These results demonstrate that the discrimination capability of our proposed HMM is superior to the validation study conducted using the FDRSM in a Canadian population and in the Framingham population. We conclude that HMM is capable of identifying patients at increased risk of developing diabetes within the next 8-years.

Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1033
Author(s):  
Alhanoof Alwaghid ◽  
Nurul Sarkar

Malware is one of the most common security threats experienced by a user when browsing webpages. A good understanding of the features of webpages (e.g., internet protocol, port, URL, Google index, and page rank) is required to analyze and mitigate the behavior of malware in webpages. This main objective of this paper is to analyze the key features of webpages and to mitigate the behavior of malware in webpages. To this end, we conducted an empirical study to identify the features that are most vulnerable to malware attacks and its results are reported. To improve the feature selection accuracy, a machine learning technique called bagging is employed using the Weka program. To analyze these behaviors, phishing and botnet data were obtained from the University of California Irvine machine learning repository. We validate our research findings by applying honeypot infrastructure using the Modern Honeypot Network (MHN) setup in a Linode Server. As the data suffer from high variance in terms of the type of data in each row, bagging is chosen because it can classify binary classes, date classes, missing values, nominal classes, numeric classes, unary classes and empty classes. As a base classifier of bagging, random tree was applied because it can handle similar types of data such as bagging, but better than other classifiers because it is faster and more accurate. Random tree had 88.22% test accuracy with the lowest run time (0.2 sec) and a receiver operating characteristic curve of 0.946. Results show that all features in the botnet dataset are equally important to identify the malicious behavior, as all scored more than 97%, with the exception of TCP and UDP. The accuracy of phishing and botnet datasets is more than 89% on average in both cross validation and test analysis. Recommendations are made for the best practice that can assist in future malware identification.


Atmosphere ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 111 ◽  
Author(s):  
Chul-Min Ko ◽  
Yeong Yun Jeong ◽  
Young-Mi Lee ◽  
Byung-Sik Kim

This study aimed to enhance the accuracy of extreme rainfall forecast, using a machine learning technique for forecasting hydrological impact. In this study, machine learning with XGBoost technique was applied for correcting the quantitative precipitation forecast (QPF) provided by the Korea Meteorological Administration (KMA) to develop a hydrological quantitative precipitation forecast (HQPF) for flood inundation modeling. The performance of machine learning techniques for HQPF production was evaluated with a focus on two cases: one for heavy rainfall events in Seoul and the other for heavy rainfall accompanied by Typhoon Kong-rey (1825). This study calculated the well-known statistical metrics to compare the error derived from QPF-based rainfall and HQPF-based rainfall against the observational data from the four sites. For the heavy rainfall case in Seoul, the mean absolute errors (MAE) of the four sites, i.e., Nowon, Jungnang, Dobong, and Gangnam, were 18.6 mm/3 h, 19.4 mm/3 h, 48.7 mm/3 h, and 19.1 mm/3 h for QPF and 13.6 mm/3 h, 14.2 mm/3 h, 33.3 mm/3 h, and 12.0 mm/3 h for HQPF, respectively. These results clearly indicate that the machine learning technique is able to improve the forecasting performance for localized rainfall. In addition, the HQPF-based rainfall shows better performance in capturing the peak rainfall amount and spatial pattern. Therefore, it is considered that the HQPF can be helpful to improve the accuracy of intense rainfall forecast, which is subsequently beneficial for forecasting floods and their hydrological impacts.


Author(s):  
Fahad Taha AL-Dhief ◽  
Nurul Mu'azzah Abdul Latiff ◽  
Nik Noordini Nik Abd. Malik ◽  
Naseer Sabri ◽  
Marina Mat Baki ◽  
...  

2021 ◽  
Author(s):  
Alexandre Oliveira Marques ◽  
Aline Nonato Sousa ◽  
Veronica Pereira Bernardes ◽  
Camila Hipolito Bernardo ◽  
Danielle Monique Reis ◽  
...  

2021 ◽  
Vol 1088 (1) ◽  
pp. 012030
Author(s):  
Cep Lukman Rohmat ◽  
Saeful Anwar ◽  
Arif Rinaldi Dikananda ◽  
Irfan Ali ◽  
Ade Rinaldi Rizki

Sign in / Sign up

Export Citation Format

Share Document