scholarly journals Topological Indices of Proteins

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Dmitry Melnikov ◽  
Antti J. Niemi ◽  
Ara Sedrakyan

Abstract Protein molecules can be approximated by discrete polygonal chains of amino acids. Standard topological tools can be applied to the smoothening of the polygons to introduce a topological classification of folded states of proteins, for example, using the self-linking number of the corresponding framed curves. In this paper we extend this classification to the discrete version, taking advantage of the “randomness” of such curves. Known definitions of the self-linking number apply to non-singular framings: for example, the Frenet framing cannot be used if the curve has inflection points. However, in the discrete proteins the special points are naturally resolved. Consequently, a separate integer topological characteristics can be introduced, which takes into account the intrinsic features of the special points. This works well for the proteins in our analysis, for which we compute integer topological indices associated with the singularities of the Frenet framing. We show how a version of the Calugareanu’s theorem is satisfied for the associated self-linking number of a discrete curve. Since the singularities of the Frenet framing correspond to the structural motifs of proteins, we propose topological indices as a technical tool for the description of the folding dynamics of proteins.

Author(s):  
Simon Čopar ◽  
Slobodan Žumer

Disclination lines in nematic liquid crystals can exist in different geometric conformations, characterized by their director profile. In certain confined colloidal suspensions and even more prominently in chiral nematics, the director profile may vary along the disclination line. We construct a robust geometric decomposition of director profile in closed disclination loops and use it to apply topological classification to linked loops with arbitrary variation of the profile, generalizing the self-linking number description of disclination loops with the winding number . The description bridges the gap between the known abstract classification scheme derived from homotopy theory and the observable local features of disclinations, allowing application of said theory to structures that occur in practice.


2002 ◽  
Vol 7 (4) ◽  
pp. 245-255 ◽  
Author(s):  
Adrian Furnham ◽  
Thomas Li-Ping Tang ◽  
David Lester ◽  
Rory O'Connor ◽  
Robert Montgomery

A total of 253 British and 318 American students were asked to make various estimates of overall intelligence as well as Gardner's (1999a) new list of 10 multiple intelligences. They made these estimations (11 in all) for themselves, their partner, and for various well-known figures such as Prince Charles, Tony Blair, Bill Gates, and Bill Clinton. Following previous research there were various sex and nationality differences in self-estimated IQ: Males rated themselves higher on verbal, logical, spatial, and spiritual IQ compared to females. Females rated their male partner as having lower verbal and spiritual, but higher spatial IQ than was the case when males rated their female partners. Participants considered Bill Clinton (2 points) and Prince Charles (5 points) less intelligent than themselves, but Tony Blair (5 points) and Bill Gates (15 points) more intelligent than themselves. Multiple regressions indicated that the best predictors of one's overall IQ estimates were logical, verbal, existential, and spatial IQ. Factor analysis of the 10 and then 8 self-estimated scores did not confirm Gardner's classification of multiple intelligences. Results are discussed in terms of the growing literature in the self-estimates of intelligence, as well as limitations of that approach.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Clément Dutreix ◽  
Matthieu Bellec ◽  
Pierre Delplace ◽  
Fabrice Mortessagne

AbstractPhase singularities appear ubiquitously in wavefields, regardless of the wave equation. Such topological defects can lead to wavefront dislocations, as observed in a humongous number of classical wave experiments. Phase singularities of wave functions are also at the heart of the topological classification of the gapped phases of matter. Despite identical singular features, topological insulators and topological defects in waves remain two distinct fields. Realising 1D microwave insulators, we experimentally observe a wavefront dislocation – a 2D phase singularity – in the local density of states when the systems undergo a topological phase transition. We show theoretically that the change in the number of interference fringes at the transition reveals the topological index that characterises the band topology in the insulator.


2021 ◽  
Vol 103 (16) ◽  
Author(s):  
Inho Lee ◽  
S. I. Hyun ◽  
J. H. Shim

2000 ◽  
Vol 20 (2) ◽  
pp. 611-626 ◽  
Author(s):  
RICHARD SWANSON ◽  
HANS VOLKMER

Weak equivalence of primitive matrices is a known invariant arising naturally from the study of inverse limit spaces. Several new invariants for weak equivalence are described. It is proved that a positive dimension group isomorphism is a complete invariant for weak equivalence. For the transition matrices corresponding to periodic kneading sequences, the discriminant is proved to be an invariant when the characteristic polynomial is irreducible. The results have direct application to the topological classification of one-dimensional inverse limit spaces.


2021 ◽  
Vol 29 (6) ◽  
pp. 835-850
Author(s):  
Vladislav Kruglov ◽  
◽  
Olga Pochinka ◽  
◽  

Purpose. The purpose of this study is to consider the class of Morse – Smale flows on surfaces, to characterize its subclass consisting of flows with a finite number of moduli of stability, and to obtain a topological classification of such flows up to topological conjugacy, that is, to find an invariant that shows that there exists a homeomorphism that transfers the trajectories of one flow to the trajectories of another while preserving the direction of movement and the time of movement along the trajectories; for the obtained invariant, to construct a polynomial algorithm for recognizing its isomorphism and to construct the realisation of the invariant by a standard flow on the surface. Methods. Methods for finding moduli of topological conjugacy go back to the classical works of J. Palis, W. di Melo and use smooth flow lianerization in a neighborhood of equilibrium states and limit cycles. For the classification of flows, the traditional methods of dividing the phase surface into regions with the same behavior of trajectories are used, which are a modification of the methods of A. A. Andronov, E. A. Leontovich, and A. G. Mayer. Results. It is shown that a Morse – Smale flow on a surface has a finite number of moduli if and only if it does not have a trajectory going from one limit cycle to another. For a subclass of Morse – Smale flows with a finite number of moduli, a classification is done up to topological conjugacy by means of an equipped graph. Conclusion. The criterion for the finiteness of the number of moduli of Morse – Smale flows on surfaces is obtained. A topological invariant is constructed that describes the topological conjugacy class of a Morse – Smale flow on a surface with a finite number of modules, that is, without trajectories going from one limit cycle to another.


2012 ◽  
Vol 7 (47) ◽  
pp. 6357-6362 ◽  
Author(s):  
Pilarski Krzysztof ◽  
Boniecki Piotr ◽  
Slosarz Piotr ◽  
Dach Jacek ◽  
Boniecka Piekarska Hanna ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document