scholarly journals The SMYD3 methyltransferase promotes myogenesis by activating the myogenin regulatory network

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Roberta Codato ◽  
Martine Perichon ◽  
Arnaud Divol ◽  
Ella Fung ◽  
Athanassia Sotiropoulos ◽  
...  

AbstractThe coordinated expression of myogenic regulatory factors, including MyoD and myogenin, orchestrates the steps of skeletal muscle development, from myoblast proliferation and cell-cycle exit, to myoblast fusion and myotubes maturation. Yet, it remains unclear how key transcription factors and epigenetic enzymes cooperate to guide myogenic differentiation. Proteins of the SMYD (SET and MYND domain-containing) methyltransferase family participate in cardiac and skeletal myogenesis during development in zebrafish, Drosophila and mice. Here, we show that the mammalian SMYD3 methyltransferase coordinates skeletal muscle differentiation in vitro. Overexpression of SMYD3 in myoblasts promoted muscle differentiation and myoblasts fusion. Conversely, silencing of endogenous SMYD3 or its pharmacological inhibition impaired muscle differentiation. Genome-wide transcriptomic analysis of murine myoblasts, with silenced or overexpressed SMYD3, revealed that SMYD3 impacts skeletal muscle differentiation by targeting the key muscle regulatory factor myogenin. The role of SMYD3 in the regulation of skeletal muscle differentiation and myotube formation, partially via the myogenin transcriptional network, highlights the importance of methyltransferases in mammalian myogenesis.

2019 ◽  
Author(s):  
Roberta Codato ◽  
Martine Perichon ◽  
Arnaud Divol ◽  
Ella Fung ◽  
Athanassia Sotiropoulos ◽  
...  

ABSTRACTThe coordinated expression of myogenic regulatory factors, including MyoD and myogenin, orchestrates the steps of skeletal muscle development, from myoblast proliferation and cell-cycle exit, to myoblast fusion and myotubes maturation. Yet, it remains unclear how key transcription factors and epigenetic enzymes cooperate to guide myogenic differentiation. Proteins of the SMYD (SET and MYND domain-containing) methyltransferase family participate in cardiac and skeletal myogenesis during development in zebrafish, Drosophila and mice. Here, we show that the mammalian SMYD3 methyltransferase coordinates skeletal muscle differentiation in vitro. Overexpression of SMYD3 in myoblasts promoted muscle differentiation and myoblasts fusion. Conversely, silencing of endogenous SMYD3 or its pharmacological inhibition impaired muscle differentiation. Genome-wide transcriptomic analysis of murine myoblasts, with silenced or overexpressed SMYD3, revealed that SMYD3 impacts skeletal muscle differentiation by targeting the key muscle regulatory factor myogenin. The role of SMYD3 in the regulation of skeletal muscle differentiation and myotube formation, partially via the myogenin transcriptional network, highlights the importance of methyltransferases in mammalian myogenesis.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hye In Ka ◽  
Hyemin Seo ◽  
Youngsook Choi ◽  
Joohee Kim ◽  
Mina Cho ◽  
...  

Abstract Background IK is a splicing factor that promotes spliceosome activation and contributes to pre-mRNA splicing. Although the molecular mechanism of IK has been previously reported in vitro, the physiological role of IK has not been fully understood in any animal model. Here, we generate an ik knock-out (KO) zebrafish using the CRISPR/Cas9 system to investigate the physiological roles of IK in vivo. Results The ik KO embryos display severe pleiotropic phenotypes, implying an essential role of IK in embryonic development in vertebrates. RNA-seq analysis reveals downregulation of genes involved in skeletal muscle differentiation in ik KO embryos, and there exist genes having improper pre-mRNA splicing among downregulated genes. The ik KO embryos display impaired neuromuscular junction (NMJ) and fast-twitch muscle development. Depletion of ik reduces myod1 expression and upregulates pax7a, preventing normal fast muscle development in a non-cell-autonomous manner. Moreover, when differentiation is induced in IK-depleted C2C12 myoblasts, myoblasts show a reduced ability to form myotubes. However, inhibition of IK does not influence either muscle cell proliferation or apoptosis in zebrafish and C2C12 cells. Conclusion This study provides that the splicing factor IK contributes to normal skeletal muscle development in vivo and myogenic differentiation in vitro.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Elvira Ragozzino ◽  
Mariarita Brancaccio ◽  
Antonella Di Costanzo ◽  
Francesco Scalabrì ◽  
Gennaro Andolfi ◽  
...  

AbstractDystrophies are characterized by progressive skeletal muscle degeneration and weakness as consequence of their molecular abnormalities. Thus, new drugs for restoring skeletal muscle deterioration are critically needed. To identify new and alternative compounds with a functional role in skeletal muscle myogenesis, we screened a library of pharmacologically active compounds and selected the small molecule 6-bromoindirubin-3′-oxime (BIO) as an inhibitor of myoblast proliferation. Using C2C12 cells, we examined BIO’s effect during myoblast proliferation and differentiation showing that BIO treatment promotes transition from cell proliferation to myogenic differentiation through the arrest of cell cycle. Here, we show that BIO is able to promote myogenic differentiation in damaged myotubes in-vitro by enriching the population of newly formed skeletal muscle myotubes. Moreover, in-vivo experiments in CTX-damaged TA muscle confirmed the pro-differentiation capability of BIO as shown by the increasing of the percentage of myofibers with centralized nuclei as well as by the increasing of myofibers number. Additionally, we have identified a strong correlation of miR-206 with BIO treatment both in-vitro and in-vivo: the enhanced expression of miR-206 was observed in-vitro in BIO-treated proliferating myoblasts, miR-206 restored expression was observed in a forced miR-206 silencing conditions antagomiR-mediated upon BIO treatment, and in-vivo in CTX-injured muscles miR-206 enhanced expression was observed upon BIO treatment. Taken together, our results highlight the capacity of BIO to act as a positive modulator of skeletal muscle differentiation in-vitro and in-vivo opening up a new perspective for novel therapeutic targets to correct skeletal muscle defects.


2018 ◽  
Vol 38 (1) ◽  
Author(s):  
Nicole Y. Shen ◽  
Sean Y. Ng ◽  
Stephen L. Toepp ◽  
Vladimir Ljubicic

Despite the emerging importance of protein arginine methyltransferases (PRMTs) in regulating skeletal muscle plasticity, PRMT biology during muscle development is complex and not completely understood. Therefore, our purpose was to investigate PRMT1, -4, and -5 expression and function in skeletal muscle cells during the phenotypic remodeling elicited by myogenesis. C2C12 muscle cell maturation, assessed during the myoblast (MB) stage, and during days 1, 3, 5, and 7 of differentiation, was employed as an in vitro model of myogenesis. We observed PRMT-specific patterns of expression and activity during myogenesis. PRMT4 and -5 gene expression was unchanged, while PRMT1 mRNA and protein content were significantly induced. Cellular monomethylarginines (MMAs) and symmetric dimethylarginines (SDMAs), indicative of global and type II PRMT activities, respectively, remained steady during development, while type I PRMT activity indicator asymmetric dimethylarginines (ADMAs) increased through myogenesis. Histone 4 arginine 3 (H4R3) and H3R17 contents were elevated coincident with the myonuclear accumulation of PRMT1 and -4. Collectively, this suggests that PRMTs are methyl donors throughout myogenesis and demonstrate specificity for their protein targets. Cells were then treated with TC-E 5003 (TC-E), a selective inhibitor of PRMT1 in order to specifically examine the enzymes role during myogenic differentiation. TC-E treated cells exhibited decrements in muscle differentiation, which were consistent with attenuated mitochondrial biogenesis and respiratory function. In summary, the present study increases our understanding of PRMT1, -4, and -5 biology during the plasticity of skeletal muscle development. Our results provide evidence for a role of PRMT1, via a mitochondrially mediated mechanism, in driving the muscle differentiation program.


Endocrinology ◽  
2007 ◽  
Vol 148 (3) ◽  
pp. 1108-1117 ◽  
Author(s):  
Irene Faenza ◽  
Giulia Ramazzotti ◽  
Alberto Bavelloni ◽  
Roberta Fiume ◽  
Gian Carlo Gaboardi ◽  
...  

Our main goal in this study was to investigate the role of phospholipase C (PLC) β1 and PLCγ1 in skeletal muscle differentiation and the existence of potential downstream targets of their signaling activity. To examine whether PLC signaling can modulate the expression of cyclin D3, a target of PLCβ1 in erythroleukemia cells, we transfected C2C12 cells with expression vectors containing PLCβ1 or PLCγ1 cDNA and with small interfering RNAs from regions of the PLCβ1 or PLCγ1 gene and followed myogenic differentiation in this well-established cell system. Intriguingly, overexpressed PLCβ1 and PLCγ1 were able to mimic insulin induction of both cyclin D3 and muscle differentiation. By knocking down PLCβ1 or PLCγ1 expression, C2C12 cells almost completely lost the increase in cyclin D3, and the differentiation program was down-regulated. To explore the induction of the cyclin D3 gene promoter during this process, we used a series of 5′-deletions of the 1.68-kb promoter linked to a reporter gene and noted a 5-fold augmentation of promoter activity upon insulin stimulation. These constructs were also cotransfected with PLCβ1 or PLCγ1 cDNAs and small interfering RNAs, respectively. Our data indicate that PLCβ1 or PLCγ1 signaling is capable of acting like insulin in regard to both the myogenic differentiation program and cyclin D3 up-regulation. Taken together, this is the first study that hints at cyclin D3 as a target of PLCβ1 and PLCγ1 during myogenic differentiation in vitro and implies that up-regulation of these enzymes is sufficient to mimic the actions of insulin in this process.


2011 ◽  
Vol 194 (4) ◽  
pp. 551-565 ◽  
Author(s):  
Yazhong Tao ◽  
Ronald L. Neppl ◽  
Zhan-Peng Huang ◽  
Jianfu Chen ◽  
Ru-Hang Tang ◽  
...  

The molecular events that modulate chromatin structure during skeletal muscle differentiation are still poorly understood. We report in this paper that expression of the H3-K4 histone methyltransferase Set7 is increased when myoblasts differentiate into myotubes and is required for skeletal muscle development, expression of muscle contractile proteins, and myofibril assembly. Knockdown of Set7 or expression of a dominant-negative Set7 mutant impairs skeletal muscle differentiation, accompanied by a decrease in levels of histone monomethylation (H3-K4me1). Set7 directly interacts with MyoD to enhance expression of muscle differentiation genes. Expression of myocyte enhancer factor 2 and genes encoding contractile proteins is decreased in Set7 knockdown myocytes. Furthermore, we demonstrate that Set7 also activates muscle gene expression by precluding Suv39h1-mediated H3-K9 methylation on the promoters of myogenic differentiation genes. Together, our experiments define a biological function for Set7 in muscle differentiation and provide a molecular mechanism by which Set7 modulates myogenic transcription factors during muscle differentiation.


2020 ◽  
Author(s):  
Gist H. Farr ◽  
Bingsi Li ◽  
Maurizio Risolino ◽  
Nathan M. Johnson ◽  
Zizhen Yao ◽  
...  

SummaryVertebrate skeletal muscles are composed of both slow-twitch and fast-twitch fiber types. How the differentiation of distinct fiber types is activated during embryogenesis is not well characterized. Skeletal muscle differentiation is initiated by the activity of the myogenic basic helix-loop-helix (bHLH) transcription factors Myf5, Myod1, Myf6, and Myog. Myod1 functions as a muscle master regulatory factor and directly activates muscle differentiation genes, including those specific to both slow and fast muscle fibers. Our previous studies showed that Pbx TALE-class homeodomain proteins bind with Myod1 on the promoter of the zebrafish fast muscle gene mylpfa and are required for proper activation of mylpfa expression and the fast-twitch muscle-specific differentiation program in zebrafish embryos. Pbx proteins have also been shown to bind regulatory regions of muscle differentiation genes in mammalian muscle cells in culture. Here, we use new zebrafish mutant strains to confirm the essential roles of zebrafish Pbx factors in embryonic fast muscle differentiation. Furthermore, we examine the requirements for Pbx genes in mouse embryonic skeletal muscle differentiation, an area that has not been investigated in the mammalian embryo. Removing Pbx1 function from skeletal muscle in Myf5Cre/+;Pbx1fl/fl mouse embryos has minor effects on embryonic muscle development. However, concomitantly deleting Pbx2 function in Myf5Cre/+;Pbx1fl/fl;Pbx2-/- mouse embryos causes delayed activation and reduced expression of fast muscle differentiation genes. In the mouse, Pbx1/Pbx2-dependent fast muscle genes closely match those that have been previously shown to be dependent on murine Six1 and Six4. This work establishes evolutionarily conserved requirements for Pbx factors in embryonic fast muscle differentiation. Our studies are revealing how Pbx homeodomain proteins help direct specific cellular differentiation pathways.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Doaa Aboalola ◽  
Victor K. M. Han

As mesenchymal stem cells (MSCs) are being investigated for regenerative therapies to be used in the clinic, delineating the roles of the IGF system in MSC growth and differentiation, in vitro, is vital in developing these cellular therapies to treat degenerative diseases. Muscle differentiation is a multistep process, starting with commitment to the muscle lineage and ending with the formation of multinucleated fibers. Insulin-like growth factor binding protein-6 (IGFBP-6), relative to other IGFBPs, has high affinity for IGF-2. However, the role of IGFBP-6 in muscle development has not been clearly defined. Our previous studies showed that in vitro extracellular IGFBP-6 increased myogenesis in early stages and could enhance the muscle differentiation process in the absence of IGF-2. In this study, we identified the signal transduction mechanisms of IGFBP-6 on muscle differentiation by placental mesenchymal stem cells (PMSCs). We showed that muscle differentiation required activation of both AKT and MAPK pathways. Interestingly, we demonstrated that IGFBP-6 could compensate for IGF-2 loss and help enhance the muscle differentiation process by triggering predominantly the MAPK pathway independent of activating either IGF-1R or the insulin receptor (IR). These findings indicate the complex interactions between IGFBP-6 and IGFs in PMSC differentiation into the skeletal muscle and that the IGF signaling axis, specifically involving IGFBP-6, is important in muscle differentiation. Moreover, although the major role of IGFBP-6 is IGF-2 inhibition, it is not necessarily the case that IGFBP-6 is the main modulator of IGF-2.


2019 ◽  
Vol 27 (5) ◽  
pp. 1644-1659 ◽  
Author(s):  
Yaping Nie ◽  
Shufang Cai ◽  
Renqiang Yuan ◽  
Suying Ding ◽  
Xumeng Zhang ◽  
...  

Abstract Zinc finger protein 422 (Zfp422) is a widely expressed zinc finger protein that serves as a transcriptional factor to regulate downstream gene expression, but until now, little is known about its roles in myogenesis. We found here that Zfp422 plays a critical role in skeletal muscle development and regeneration. It highly expresses in mouse skeletal muscle during embryonic development. Specific knockout of Zfp422 in skeletal muscle impaired embryonic muscle formation. Satellite cell-specific Zfp422 deletion severely inhibited muscle regeneration. Myoblast differentiation and myotube formation were suppressed in Zfp422-deleted C2C12 cells, isolated primary myoblasts, and satellite cells. Chromatin Immunoprecipitation Sequencing (ChIP-Seq) revealed that Zfp422 regulated ephrin type-A receptor 7 (EphA7) expression by binding an upstream 169-bp DNA sequence, which was proved to be an enhancer of EphA7. Knocking EphA7 down in C2C12 cells or deleting Zfp422 in myoblasts will inhibit cell apoptosis which is required for myoblast differentiation. These results indicate that Zfp422 is essential for skeletal muscle differentiation and fusion, through regulating EphA7 expression to maintain proper apoptosis.


Sign in / Sign up

Export Citation Format

Share Document