protein arginine methyltransferases
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 45)

H-INDEX

29
(FIVE YEARS 4)

eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Maxim I Maron ◽  
Alyssa D Casill ◽  
Varun Gupta ◽  
Jacob S Roth ◽  
Simone Sidoli ◽  
...  

Protein arginine methyltransferases (PRMTs) are required for the regulation of RNA processing factors. Type I PRMT enzymes catalyze mono- and asymmetric dimethylation; Type II enzymes catalyze mono- and symmetric dimethylation. To understand the specific mechanisms of PRMT activity in splicing regulation, we inhibited Type I and II PRMTs and probed their transcriptomic consequences. Using the newly developed Splicing Kinetics and Transcript Elongation Rates by Sequencing (SKaTER-seq) method, analysis of co-transcriptional splicing demonstrated that PRMT inhibition resulted in altered splicing rates. Surprisingly, co-transcriptional splicing kinetics did not correlate with final changes in splicing of polyadenylated RNA. This was particularly true for retained introns (RI). By using actinomycin D to inhibit ongoing transcription, we determined that PRMTs post-transcriptionally regulate RI. Subsequent proteomic analysis of both PRMT-inhibited chromatin and chromatin-associated polyadenylated RNA identified altered binding of many proteins, including the Type I substrate, CHTOP, and the Type II substrate, SmB. Targeted mutagenesis of all methylarginine sites in SmD3, SmB, and SmD1 recapitulated splicing changes seen with Type II PRMT inhibition, without disrupting snRNP assembly. Similarly, mutagenesis of all methylarginine sites in CHTOP recapitulated the splicing changes seen with Type I PRMT inhibition. Examination of subcellular fractions further revealed that RI were enriched in the nucleoplasm and chromatin. Together, these data demonstrate that, through Sm and CHTOP arginine methylation, PRMTs regulate the post-transcriptional processing of nuclear, detained introns.


aBIOTECH ◽  
2021 ◽  
Author(s):  
Pingxian Zhang ◽  
Xiulan Li ◽  
Yifan Wang ◽  
Weijun Guo ◽  
Sadaruddin Chachar ◽  
...  

AbstractThe timing of floral transition is critical for reproductive success in flowering plants. In long-day (LD) plant Arabidopsis, the floral regulator gene FLOWERING LOCUS T (FT) is a major component of the mobile florigen. FT expression is rhythmically activated by CONSTANS (CO), and specifically accumulated at dusk of LDs. However, the underlying mechanism of adequate regulation of FT transcription in response to day-length cues to warrant flowering time still remains to be investigated. Here, we identify a homolog of human protein arginine methyltransferases 6 (HsPRMT6) in Arabidopsis, and confirm AtPRMT6 physically interacts with three positive regulators of flowering Nuclear Factors YC3 (NF-YC3), NF-YC9, and NF-YB3. Further investigations find that AtPRMT6 and its encoding protein accumulate at dusk of LDs. PRMT6-mediated H3R2me2a modification enhances the promotion of NF-YCs on FT transcription in response to inductive LD signals. Moreover, AtPRMT6 and its homologues proteins AtPRMT4a and AtPRMT4b coordinately inhibit the expression of FLOWERING LOCUS C, a suppressor of FT. Taken together, our study reveals the role of arginine methylation in photoperiodic pathway and how the PRMT6-mediating H3R2me2a system interacts with NF-CO module to dynamically control FT expression and facilitate flowering time.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Kui Liu ◽  
Jing Ma ◽  
Jiao Ao ◽  
Lili Mu ◽  
Yixian Wang ◽  
...  

Chromatin-modifying enzymes, especially protein arginine methyltransferases (PRMTs), have been identified as candidate targets for cancer. Cellular or animal-based evidence has suggested an association between coactivator-linked arginine methyltransferase 1 (CARM1) and cancer progression. However, the relationship between CARM1 and patient prognosis and immune infiltration in pancancer patients is unknown. On the basis of the GEO and TCGA databases, we first investigated the possible oncogenic functions of CARM1 in thirty-three tumor types. CARM1 expression was elevated in many types of tumors. In addition, there was a significant association between CARM1 expression and the survival rate of tumor patients. Uterine corpus endometrial carcinoma (UCES) samples had the highest CARM1 mutation frequency of all cancer types. In head and neck squamous cell carcinoma (HNSC) and lung squamous cell carcinoma (LUSC), CARM1 expression was associated with the level of CD8+ T cell infiltration, and cancer-associated fibroblast infiltration was also observed in other tumors including kidney renal papillary cell carcinoma (KIRC) and prostate adenocarcinoma (PRAD). CARM1 was involved in immune modulation and played an important role in the tumor microenvironment (TME). Furthermore, activities associated with RNA transport and its metabolism were included in the possible mechanisms of CARM1. Herein, our first pancancer research explores the oncogenic role of CARM1 in various tumors. CARM1 is associated with immune infiltrates and can be employed as a predictive biomarker in pancancer.


Life ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1132
Author(s):  
Rui Dong ◽  
Xuejun Li ◽  
Kwok-On Lai

Among the nine mammalian protein arginine methyltransferases (PRMTs), PRMT8 is unusual because it has restricted expression in the nervous system and is the only membrane-bound PRMT. Emerging studies have demonstrated that this enzyme plays multifaceted roles in diverse processes in neurons. Here we will summarize the unique structural features of PRMT8 and describe how it participates in various neuronal functions such as dendritic growth, synapse maturation, and synaptic plasticity. Recent evidence suggesting the potential role of PRMT8 function in neurological diseases will also be discussed.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Bingyuan Wang ◽  
Mingrui Zhang ◽  
Zhiguo Liu ◽  
Yulian Mu ◽  
Kui Li

Protein arginine methylation is a posttranslational modification catalyzed by protein arginine methyltransferases (PRMTs), which play critical roles in many biological processes. To date, nine PRMT family members, namely, PRMT1, 2, 3, 4, 5, 6, 7, 8, and 9, have been identified in mammals. Among them, PRMT7 is a type III PRMT that can only catalyze the formation of monomethylarginine and plays pivotal roles in several kinds of stem cells. It has been reported that PRMT7 is closely associated with embryonic stem cells, induced pluripotent stem cells, muscle stem cells, and human cancer stem cells. PRMT7 deficiency or mutation led to severe developmental delay in mice and humans, which is possibly due to its crucial functions in stem cells. Here, we surveyed and summarized the studies on PRMT7 in stem cells and development in mice and humans and herein provide a discussion of the underlying molecular mechanisms. Furthermore, we also discuss the roles of PRMT7 in cancer, adipogenesis, male reproduction, cellular stress, and cellular senescence, as well as the future perspectives of PRMT7-related studies. Overall, PRMT7 mediates the proliferation and differentiation of stem cells. Deficiency or mutation of PRMT7 causes developmental delay, including defects in skeletal muscle, bone, adipose tissues, neuron, and male reproduction. A better understanding of the roles of PRMT7 in stem cells and development as well as the underlying mechanisms will provide information for the development of strategies for in-depth research of PRMT7 and stem cells as well as their applications in life sciences and medicine.


2021 ◽  
Vol 7 (10) ◽  
pp. 807
Author(s):  
Xiaodi Xu ◽  
Yong Chen ◽  
Boqiang Li ◽  
Shiping Tian

Penicillium expansum is one of the most common and destructive post-harvest fungal pathogens that can cause blue mold rot and produce mycotoxins in fruit, leading to significant post-harvest loss and food safety concerns. Arginine methylation by protein arginine methyltransferases (PRMTs) modulates various cellular processes in many eukaryotes. However, the functions of PRMTs are largely unknown in post-harvest fungal pathogens. To explore their roles in P. expansum, we identified four PRMTs (PeRmtA, PeRmtB, PeRmtC, and PeRmt2). The single deletion of PeRmtA, PeRmtB, or PeRmt2 had minor or no impact on the P. expansum phenotype while deletion of PeRmtC resulted in decreased conidiation, delayed conidial germination, impaired pathogenicity and pigment biosynthesis, and altered tolerance to environmental stresses. Further research showed that PeRmtC could regulate two core regulatory genes, PeBrlA and PeAbaA, in conidiation, a series of backbone genes in secondary metabolism, and affect the symmetric ω-NG, N’G-dimethylarginine (sDMA) modification of proteins with molecular weights of primarily 16–17 kDa. Collectively, this work functionally characterized four PRMTs in P. expansum and showed the important roles of PeRmtC in the development, pathogenicity, and secondary metabolism of P. expansum.


2021 ◽  
Author(s):  
Lucas Lorenzon ◽  
Jose Carlos Quilles ◽  
Gustavo Daniel Campagnaro ◽  
Leticia Almeida ◽  
Flavio Protasio Veras ◽  
...  

In trypanosomatids, regulation of gene expression occurs mainly at the posttranscriptional level, and RNA-binding proteins (RBPs) are key players in determining the fates of transcripts. RBPs are major targets of protein arginine methyltransferases (PRMTs), which posttranslationally regulate the RNA-binding capacity and other macromolecular interactions of RBPs by transferring methyl groups to protein arginine residues. Herein, we present the results of a study that functionally characterized the five predicted PRMTs in Leishmania braziliensis by gene knockout and endogenous protein HA tagging using CRISPR/Cas9 gene editing. We report that arginine methylation profiles vary among Leishmania species and that target protein methylation changes across different L. braziliensis life cycle stages, with higher PRMT expression in the promastigote stages than in the axenic amastigote stage. Knockout of some of the L. braziliensis PRMTs led to significant changes in global arginine methylation patterns without affecting promastigote axenic growth. Deletion of either PRMT1 or PRMT3 disrupted most type I PRMT activity, resulting in a global increase in monomethyl arginine (MMA) levels, which is mainly catalyzed by PRMT7. Putative targets and/or PRMT-interacting proteins were identified by coimmunoprecipitation using HA-tagged PRMTs, revealing a network of target RBPs and suggesting functional interactions between them and a relevant participation in epigenetic control of gene expression. Finally, we demonstrate that L. braziliensis PRMT1 and PRMT5 are required for efficient macrophage infection in vitro, and that in the absence of PRMT1 and PRMT5, axenic amastigote proliferation is impaired. The results indicate that arginine methylation is modulated across life cycle stages in L. braziliensis and show possible functional overlap and cooperation among the different PRMTs in targeting proteins. Overall, our data suggest important regulatory roles of these proteins throughout the L. braziliensis life cycle, showing that arginine methylation is important for parasite-host cell interactions.


Medicine ◽  
2021 ◽  
Vol 100 (36) ◽  
pp. e27094
Author(s):  
Ioanna Maria Grypari ◽  
Souzana Logotheti ◽  
Vasiliki Zolota ◽  
Patricia Troncoso ◽  
Eleni Efstathiou ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Marianna Maniaci ◽  
Francesca Ludovica Boffo ◽  
Enrico Massignani ◽  
Tiziana Bonaldi

RNA binding proteins (RBPs) bind RNAs through specific RNA-binding domains, generating multi-molecular complexes known as ribonucleoproteins (RNPs). Various post-translational modifications (PTMs) have been described to regulate RBP structure, subcellular localization, and interactions with other proteins or RNAs. Recent proteome-wide experiments showed that RBPs are the most representative group within the class of arginine (R)-methylated proteins. Moreover, emerging evidence suggests that this modification plays a role in the regulation of RBP-RNA interactions. Nevertheless, a systematic analysis of how changes in protein-R-methylation can affect globally RBPs-RNA interactions is still missing. We describe here a quantitative proteomics approach to profile global changes of RBP-RNA interactions upon the modulation of type I and II protein arginine methyltransferases (PRMTs). By coupling the recently described Orthogonal Organic Phase Separation (OOPS) strategy with the Stable Isotope Labelling with Amino acids in Cell culture (SILAC) and pharmacological modulation of PRMTs, we profiled RNA-protein interaction dynamics in dependence of protein-R-methylation. Data are available via ProteomeXchange with identifier PXD024601.


Sign in / Sign up

Export Citation Format

Share Document