scholarly journals Wedge prism approach for simultaneous multichannel microscopy

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hanna Cai ◽  
Yao L. Wang ◽  
Richard T. Wainner ◽  
Nicusor V. Iftimia ◽  
Christopher V. Gabel ◽  
...  

AbstractMultichannel (multicolor) imaging has become a powerful technique in biology research for performing in vivo neuronal calcium imaging, colocalization of fluorescent labels, non-invasive pH measurement, and other procedures. We describe a novel add-on approach for simultaneous multichannel optical microscopy based on simple wedge prisms. Our device requires no alignment and is simple, robust, user-friendly, and less expensive than current commercial instruments based on switchable filters or dual-view strategies. Point spread function measurements and simulations in Zemax indicate a reduction in resolution in the direction orthogonal to the wedge interface and in the axial direction, without introducing aberration. These effects depend on the objective utilized and are most significant near the periphery of the field of view. We tested a two-channel device on C. elegans neurons in vivo and demonstrated comparable signals to a conventional dual-view instrument. We also tested a four-channel device on fixed chick embryo Brainbow samples and identified individual neurons by their spectra without extensive image postprocessing. Therefore, we believe that this technology has the potential for broad use in microscopy.

Author(s):  
Ashley A. Martin ◽  
Simon Alford ◽  
Janet E. Richmond

2020 ◽  
Vol 4 (s1) ◽  
pp. 11-11
Author(s):  
Tyler Nguyen ◽  
Zoe Vriesman ◽  
Peter Andrews ◽  
Sehban Masood ◽  
M Stewart ◽  
...  

OBJECTIVES/GOALS: Our goal is to develop a non-invasive stimulation technique using magneto-electric nanoparticles (MENs) for inducing and enhancing neuronal activity with high spatial and temporal resolutions and minimal toxicity, which can potentially be used as a more effective approach to brain stimulation. METHODS/STUDY POPULATION: MENs compose of core-shell structures that are attracted to strong external magnetic field (~5000 Gauss) but produces electric currents with weaker magnetic field (~450 Gauss). MENs were IV treated into mice and drawn to the brain cortex with a strong magnetic field. We then stimulate MENs with a weaker magnetic field via electro magnet. With two photon calcium imaging, we investigated both the temporal and spatial effects of MENs on neuronal activity both in vivo and in vitro. We performed mesoscopic whole brain calcium imaging on awake animal to assess the MENs effects. Furthermore, we investigated the temporal profile of MENs in the vasculatures post-treatment and its toxicities to CNS. RESULTS/ANTICIPATED RESULTS: MENs were successfully localized to target cortical regions within 30 minutes of magnetic application. After wirelessly applying ~450 G magnetic field between 10-20 Hz, we observed a dramatic increase of calcium signals (i.e. neuronal excitability) both in vitro cultured neurons and in vivo treated animals. Whole brain imaging of awake mice showed a focal increase in calcium signals at the area where MENs localized and the signals spread to regions further away. We also found MENs stimulatory effects lasted up to 24 hours post treatment. MEN stimulation increases c-Fos expression but resulted in no inflammatory changes, up to one week, by assessing microglial or astrocytes activations. DISCUSSION/SIGNIFICANCE OF IMPACT: Our study shows, through controlling the applied magnetic field, MENs can be focally delivered to specific cortical regions with high efficacy and wirelessly activated neurons with high spatial and temporal resolution. This method shows promising potential to be a new non-invasive brain modulation approach disease studies and treatments.


2009 ◽  
Vol 1790 (8) ◽  
pp. 765-769 ◽  
Author(s):  
Tokumitsu Wakabayashi ◽  
Yukihiro Kimura ◽  
Yusuke Ohba ◽  
Ryota Adachi ◽  
Yoh-ichi Satoh ◽  
...  

Author(s):  
Samuel H. Chung ◽  
Lin Sun ◽  
Christopher V. Gabel
Keyword(s):  

2021 ◽  
Author(s):  
Zhe Dong ◽  
William Mau ◽  
Yu (Susie) Feng ◽  
Zachary T. Pennington ◽  
Lingxuan Chen ◽  
...  

Miniature microscopes have gained considerable traction for in vivo calcium imaging in freely behaving animals. However, extracting calcium signals from raw videos is a computationally complex problem and remains a bottleneck for many researchers utilizing single-photon in vivo calcium imaging. Despite the existence of many powerful analysis packages designed to detect and extract calcium dynamics, most have either key parameters that are hard-coded or insufficient step-by-step guidance and validations to help the users choose the best parameters. This makes it difficult to know whether the output is reliable and meets the assumptions necessary for proper analysis. Moreover, large memory demand is often a constraint for setting up these pipelines since it limits the choice of hardware. Given these difficulties, there is a need for a low memory demand, user-friendly tool offering interactive visualizations of how altering parameters affects data output. Our open-source analysis pipeline, Minian (Miniscope Analysis), facilitates the transparency and accessibility of single-photon calcium imaging analysis, permitting users with little computational experience to extract the location of cells and their corresponding calcium traces and deconvolved neural activities. Minian contains interactive visualization tools for every step of the analysis, as well as detailed documentation and tips on parameter exploration. Furthermore, Minian has relatively small memory demands and can be run on a laptop, making it available to labs that do not have access to specialized computational hardware. Minian has been validated to reliably and robustly extract calcium events across different brain regions and from different cell types. In practice, Minian provides an open-source calcium imaging analysis pipeline with user-friendly interactive visualizations to explore parameters and validate results.


2009 ◽  
Vol 65 ◽  
pp. S174-S175
Author(s):  
Yusuke Ohba ◽  
Tokumitsu Wakabayashi ◽  
Yukihiro Kimura ◽  
Yoh-ichi Satoh ◽  
Ryuzo Shingai

Sign in / Sign up

Export Citation Format

Share Document