scholarly journals RISK6, a 6-gene transcriptomic signature of TB disease risk, diagnosis and treatment response

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Adam Penn-Nicholson ◽  
◽  
Stanley Kimbung Mbandi ◽  
Ethan Thompson ◽  
Simon C. Mendelsohn ◽  
...  
2019 ◽  
Author(s):  
Adam Penn-Nicholson ◽  
Stanley Kimbung Mbandi ◽  
Ethan Thompson ◽  
Simon C. Mendelsohn ◽  
Sara Suliman ◽  
...  

ABSTRACTImproved tuberculosis diagnostics and tools for monitoring treatment response are urgently needed. We developed a robust and simple, PCR-based host-blood transcriptomic signature, RISK6, for multiple applications: identifying individuals at risk of incident disease, as a screening test for subclinical or clinical tuberculosis, and for monitoring tuberculosis treatment. RISK6 utility was validated by blind prediction using quantitative real-time (qRT) PCR in seven independent cohorts.Prognostic performance significantly exceeded that of previous signatures discovered in the same cohort. Performance for diagnosing subclinical and clinical disease in HIV-uninfected and HIV-infected persons, assessed by area under the receiver-operating characteristic curve, exceeded 85%. As a screening test for tuberculosis, the sensitivity at 90% specificity met or approached the benchmarks set out in World Health Organization target product profiles for non-sputum-based tests. RISK6 scores correlated with lung immunopathology activity, measured by positron emission tomography, and tracked treatment response, demonstrating utility as treatment response biomarker, while predicting treatment failure prior to treatment initiation. Performance of the test in capillary blood samples collected by finger-prick was noninferior to venous blood collected in PAXgene tubes. These results support incorporation of RISK6 into rapid, capillary blood-based point-of-care PCR devices for prospective assessment in field studies.


2021 ◽  
Vol 41 (1) ◽  
Author(s):  
Mineto Ota ◽  
Keishi Fujio

AbstractRecent innovation in high-throughput sequencing technologies has drastically empowered the scientific research. Consequently, now, it is possible to capture comprehensive profiles of samples at multiple levels including genome, epigenome, and transcriptome at a time. Applying these kinds of rich information to clinical settings is of great social significance. For some traits such as cardiovascular diseases, attempts to apply omics datasets in clinical practice for the prediction of the disease risk have already shown promising results, although still under way for immune-mediated diseases. Multiple studies have tried to predict treatment response in immune-mediated diseases using genomic, transcriptomic, or clinical information, showing various possible indicators. For better prediction of treatment response or disease outcome in immune-mediated diseases, combining multi-layer information together may increase the power. In addition, in order to efficiently pick up meaningful information from the massive data, high-quality annotation of genomic functions is also crucial. In this review, we discuss the achievement so far and the future direction of multi-omics approach to immune-mediated diseases.


Author(s):  
Yongji Li ◽  
Wendi Yang ◽  
Feng Wang

Abstract Background Cell division control protein 42 (CDC42) is reported to be involved in multiple inflammation processes by regulating T cell differentiation, maintaining immune cell homeostasis, and altering their function, while no relevant studies explored its clinical role in patients with rheumatoid arthritis (RA). Therefore, this study aimed to explore the correlation of CDC42 with Th1 and Th17 cells and its association with disease risk, activity, and treatment outcomes of RA. Methods After the enrollment of 95 active RA patients and 50 healthy subjects (HC), their CDC42, Th1 cells, and Th17 cells were assayed by RT-qPCR and flow cytometry, accordingly. For RA patients only, CDC42 was also detected at W6, and W12 after treatment. The treatment response and remission status were evaluated at W12. Results Compared to HC, CDC42 was reduced (P < 0.001), while Th1 cells (P = 0.021) and Th17 cells (P < 0.001) were increased in RA patients. Besides, CDC42 was negatively correlated with Th17 cells (P < 0.001), erythrocyte sedimentation rate (ESR) (P = 0.012), C-reactive protein (P = 0.002), and disease activity score in 28 joints (DAS28) (P = 0.007), but did not relate to Th1 cells or other disease features (all P > 0.05) in RA patients. Furthermore, CDC42 was elevated during treatment in RA patients (P < 0.001). Moreover, CDC42 increment at W12 correlated with treatment response (P = 0.004). Besides, CDC42 elevation at W0 (P = 0.038), W6 (P = 0.001), and W12 (P < 0.001) also linked with treatment remission. Conclusion CDC42 has the potential to serve as a biomarker to monitor disease activity and treatment efficacy in patients with RA.


Sign in / Sign up

Export Citation Format

Share Document