scholarly journals Successful mating and hybridisation in two closely related flatworm species despite significant differences in reproductive morphology and behaviour

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Pragya Singh ◽  
Daniel N. Ballmer ◽  
Max Laubscher ◽  
Lukas Schärer
2008 ◽  
Vol 8 (1) ◽  
pp. 236 ◽  
Author(s):  
David W Rogers ◽  
Matthew Denniff ◽  
Tracey Chapman ◽  
Kevin Fowler ◽  
Andrew Pomiankowski

1987 ◽  
Vol 65 (11) ◽  
pp. 2338-2351 ◽  
Author(s):  
E. E. McIver ◽  
J. F. Basinger

Fossil cedar foliage of the Cupressinocladus interruptus type, with associated seeds and cones, is locally abundant in Paleocene deposits of the Ravenscrag Formation, southwestern Saskatchewan, Canada. Vegetative remains of this type occur frequently in early Tertiary plant assemblages throughout the northern hemisphere, indicating that this now extinct cedar was once widespread. For the first time this cedar can be described on the basis of both vegetative and reproductive morphology. Foliage is frond-like with a characteristic opposite branching pattern. Seed cones are globose and woody and bear four equal and decussate scales with prominent umbos. Seeds bear large, equal, semicircular wings. The fossil cedar appears most closely related to extant Cupressaceae such as Thuja, Chamaecyparis, and Heyderia. Foliage closely resembles that of Thuja, while cones are most similar to those of Chamaecyparis. The fossil differs sufficiently in foliage and seed cone structure to preclude assignment to an extant genus and is here assigned to Mesocyparis borealis gen. et sp. nov. Similarities among such extant genera as Thuja, Chamaecyparis, Heyderia, and Thujopsis and the fossil Mesocyparis borealis suggest that all may belong to a single natural group. Furthermore, this group may be more closely related to the southern hemispheric genera Libocedrus, Papuacedrus, and Austrocedrus than present classification schemes imply. Our examination of the Cupressaceae indicates that a revision of present systems of classification is required to accommodate evidence from both extant and extinct cedars.


2015 ◽  
Vol 27 (2) ◽  
pp. 452-461 ◽  
Author(s):  
Amanda Bretman ◽  
Claudia Fricke ◽  
James D. Westmancoat ◽  
Tracey Chapman

1988 ◽  
Vol 8 (3) ◽  
pp. 333 ◽  
Author(s):  
Bruce E. Felgenhauer ◽  
Lawrence G. Abele ◽  
Won Kim

2020 ◽  
Author(s):  
Yongzhuo Chen ◽  
Min Zhang ◽  
Wei Hu ◽  
Jing Li ◽  
Pengcheng Liu ◽  
...  

Abstract Background Drosophila suzukii is widely distributed. Research has revealed that the presence of Drosophila melanogaster can reduce the emergence and egg laying of D. suzukii. However, the reasons for these phenomena have not yet been reported. To investigate this issue, we sought to answer three questions: Can the presence of D. melanogaster reduce the longevity of D. suzukii? Does D. melanogaster dominate in larval interspecific competition with D. suzukii? Does reproductive interference occur between these species; i.e., do individuals of one species (e.g., D. suzukii) engage in reproductive activities with individuals of the other (e.g., D. melanogaster) such that the fitness of one or both species is reduced? Results The results showed that the adult offspring number of Drosophila suzukii was significantly reduced when this species was reared with Drosophila melanogaster. The larval interspecific competition had no significant effects on Drosophila suzukii longevity or population size. Surprisingly, Drosophila melanogaster imposed reproductive interference on males of Drosophila suzukii, which led to a significant decline in the rate of successful mating of the latter species. Conclusions The presence of Drosophila melanogaster causes the population size of Drosophila suzukii to decrease through reproductive interference, and the rate of successful mating in Drosophila suzukii is significantly reduced in the presence of Drosophila melanogaster.


1991 ◽  
Vol 261 (3) ◽  
pp. R522-R530 ◽  
Author(s):  
H. A. Maier ◽  
D. D. Feist

To assess factors controlling seasonal thermoregulatory and reproductive changes, collared lemmings (Dicrostonyx groenlandicus) were exposed for 16 wk to long day (LD, 22 h light: 2 h dark) and warm (15 +/- 3 degrees C), LD and cold (1 +/- 0.5 degrees C), short day (SD, 4 h light: 20 h dark) and warm, SD and cold or acclimatized to outdoor winter conditions (OUT). Hair length and color, body mass, and food intake were monitored weekly. Resting metabolic rates (RMR) and nonshivering thermogenesis (NST) were estimated several times by measuring oxygen consumption before and after norepinephrine injections. Body composition and reproductive condition were determined at the end of the experiment. SD and OUT groups had a 15.8% lower (P less than 0.01) RMR at 7 degrees C than the LD groups. Lower thermal conductance in SD and OUT animals appears due to molt to white winter pelage, which occurred by week 3 in SD but not in LD groups. Neither SD, cold, nor OUT altered NST or reproductive morphology. SD-exposed lemmings showed 19.2% greater growth than those in LD, resulting primarily from a 29.2 and 15.0% increase in lean and ash components, respectively. Cold exposure increased food intake by 34.7%. Results suggest that the pineal gland, which mediates SD effects, may influence molt and growth but not NST or reproductive morphology.


Sign in / Sign up

Export Citation Format

Share Document