scholarly journals Convolutional neural networks versus radiologists in characterization of small hypoattenuating hepatic nodules on CT: a critical diagnostic challenge in staging of colorectal carcinoma

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Korosh Khalili ◽  
Raymond L. Lawlor ◽  
Marina Pourafkari ◽  
Hua Lu ◽  
Pascal Tyrrell ◽  
...  

Abstract Our objective was to compare the diagnostic performance and diagnostic confidence of convolutional neural networks (CNN) to radiologists in characterizing small hypoattenuating hepatic nodules (SHHN) in colorectal carcinoma (CRC) on CT scans. Retrospective review of CRC CT scans over 6-years yielded 199 patients (550 SHHN) defined as < 1 cm in diameter. The reference standard was established through 1-year stability/MRI for benign or nodule evolution for malignant nodules. Five CNNs underwent supervised training on 150 patients (412 SHHN). The remaining 49 patients (138 SHHN) were used as testing-set to compare performance of 3 radiologists to CNN, measured through ROC AUC analysis of confidence rating assigned to each nodule by the radiologists. Multivariable modeling was used to compensate for radiologist bias from visible findings other than SHHN. In characterizing SHHN as benign or malignant, the radiologists’ mean AUC ROC (0.96) was significantly higher than CNN (0.84, p = 0.0004) but equivalent to CNN adjusted through multivariable modeling for presence of synchronous ≥ 1 cm liver metastases (0.95, p = 0.9). The diagnostic confidence of radiologists and CNN were analyzed. There were significantly lower number of nodules rated with low confidence by CNN (19.6%) and CNN with liver metastatic status (18.1%) than two (38.4%, 44.2%, p < 0.0001) but not a third radiologist (11.1%, p = 0.09). We conclude that in CRC, CNN in combination with liver metastatic status equaled expert radiologists in characterizing SHHN but with better diagnostic confidence.

2021 ◽  
Vol 27 (S1) ◽  
pp. 450-452
Author(s):  
Damien Heimes ◽  
Jonas Scheunert ◽  
Andreas Beyer ◽  
Jürgen Belz ◽  
Saleh Firoozabadi ◽  
...  

2019 ◽  
Vol 14 (8) ◽  
pp. 1275-1284 ◽  
Author(s):  
Farid Ouhmich ◽  
Vincent Agnus ◽  
Vincent Noblet ◽  
Fabrice Heitz ◽  
Patrick Pessaux

2019 ◽  
Vol 12 (9) ◽  
pp. 848-852 ◽  
Author(s):  
Renan Sales Barros ◽  
Manon L Tolhuisen ◽  
Anna MM Boers ◽  
Ivo Jansen ◽  
Elena Ponomareva ◽  
...  

Background and purposeInfarct volume is a valuable outcome measure in treatment trials of acute ischemic stroke and is strongly associated with functional outcome. Its manual volumetric assessment is, however, too demanding to be implemented in clinical practice.ObjectiveTo assess the value of convolutional neural networks (CNNs) in the automatic segmentation of infarct volume in follow-up CT images in a large population of patients with acute ischemic stroke.Materials and methodsWe included CT images of 1026 patients from a large pooling of patients with acute ischemic stroke. A reference standard for the infarct segmentation was generated by manual delineation. We introduce three CNN models for the segmentation of subtle, intermediate, and severe hypodense lesions. The fully automated infarct segmentation was defined as the combination of the results of these three CNNs. The results of the three-CNNs approach were compared with the results from a single CNN approach and with the reference standard segmentations.ResultsThe median infarct volume was 48 mL (IQR 15–125 mL). Comparison between the volumes of the three-CNNs approach and manually delineated infarct volumes showed excellent agreement, with an intraclass correlation coefficient (ICC) of 0.88. Even better agreement was found for severe and intermediate hypodense infarcts, with ICCs of 0.98 and 0.93, respectively. Although the number of patients used for training in the single CNN approach was much larger, the accuracy of the three-CNNs approach strongly outperformed the single CNN approach, which had an ICC of 0.34.ConclusionConvolutional neural networks are valuable and accurate in the quantitative assessment of infarct volumes, for both subtle and severe hypodense infarcts in follow-up CT images. Our proposed three-CNNs approach strongly outperforms a more straightforward single CNN approach.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tuan D. Pham

Abstract The use of imaging data has been reported to be useful for rapid diagnosis of COVID-19. Although computed tomography (CT) scans show a variety of signs caused by the viral infection, given a large amount of images, these visual features are difficult and can take a long time to be recognized by radiologists. Artificial intelligence methods for automated classification of COVID-19 on CT scans have been found to be very promising. However, current investigation of pretrained convolutional neural networks (CNNs) for COVID-19 diagnosis using CT data is limited. This study presents an investigation on 16 pretrained CNNs for classification of COVID-19 using a large public database of CT scans collected from COVID-19 patients and non-COVID-19 subjects. The results show that, using only 6 epochs for training, the CNNs achieved very high performance on the classification task. Among the 16 CNNs, DenseNet-201, which is the deepest net, is the best in terms of accuracy, balance between sensitivity and specificity, $$F_1$$ F 1 score, and area under curve. Furthermore, the implementation of transfer learning with the direct input of whole image slices and without the use of data augmentation provided better classification rates than the use of data augmentation. Such a finding alleviates the task of data augmentation and manual extraction of regions of interest on CT images, which are adopted by current implementation of deep-learning models for COVID-19 classification.


Sign in / Sign up

Export Citation Format

Share Document