scholarly journals Inhibition of purinergic P2X receptor 7 (P2X7R) decreases granulocyte-macrophage colony-stimulating factor (GM-CSF) expression in U251 glioblastoma cells

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Matthew Drill ◽  
Kim L. Powell ◽  
Liyen Katrina Kan ◽  
Nigel C. Jones ◽  
Terence J. O’Brien ◽  
...  

Abstract Glioblastoma is the most aggressive form of primary brain cancer, with a median survival of 12–15 months. The P2X receptor 7 (P2X7R) is upregulated in glioblastoma and is associated with increased tumor cell proliferation. The cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) is also upregulated in glioblastoma and has been shown to have both pro- and anti-tumor functions. This study investigates the potential mechanism linking P2X7R and GM-CSF in the U251 glioblastoma cell line and the therapeutic potential of P2X7R antagonism in this setting. P2X7R protein and mRNA was demonstrated to be expressed in the U251 cell line as assessed by immunocytochemistry and qPCR. Its channel function was intact as demonstrated by live cell confocal imaging using a calcium indicator Fluo-4 AM. Inhibition of P2X7R using antagonist AZ10606120, decreased both GM-CSF mRNA (P < 0.05) and protein (P < 0.01) measured by qPCR and ELISA respectively. Neutralization of GM-CSF with an anti-GM-CSF antibody did not alter U251 cell proliferation, however, P2X7R antagonism with AZ10606120 significantly reduced U251 glioblastoma cell numbers (P < 0.01). This study describes a novel link between P2X7R activity and GM-CSF expression in a human glioblastoma cell line and highlights the potential therapeutic benefit of P2X7R inhibition with AZ10606120 in glioblastoma.

Blood ◽  
1989 ◽  
Vol 74 (1) ◽  
pp. 42-48 ◽  
Author(s):  
N Komatsu ◽  
T Suda ◽  
M Moroi ◽  
N Tokuyama ◽  
Y Sakata ◽  
...  

Abstract Recently, a human megakaryoblastic cell line, CMK, was established from the peripheral blood of a megakaryoblastic leukemia patient with Down syndrome. Using this cell line, we studied the proliferation and differentiation of megakaryocytic cells in the presence of highly purified human hematopoietic factors and phorbol 12-myristate-13- acetate (PMA). In a methylcellulose culture system, interleukin-3 (IL- 3) and granulocyte-macrophage colony-stimulating factor (GM-CSF) facilitated colony formation by CMK cells in a dose-dependent manner. The maximum stimulating doses of these factors were 10 and 200 U/mL, respectively. These concentrations were comparable to those that stimulate activity in normal hematopoietic cells. In contrast, granulocyte-colony stimulating factor (G-CSF), macrophage-colony stimulating factor (M-CSF), and erythropoietin (EPO) had no effects on the colony formation of CMK cells. In a liquid culture system, 20% of the CMK cells expressed glycoprotein IIb/IIIa (GPIIb/IIIa) antigen without hematopoietic factors, whereas 40% of the cells expressed GPIIb/IIIa with the addition of IL-3 and GM-CSF. EPO also slightly enhanced expression of GPIIb/IIIa. On the other hand, PMA inhibited growth of CMK cells and induced most of them to express the GPIIb/IIIa antigen. Furthermore, PMA induced CMK cells to produce growth activity toward new inocula of CMK cells. This growth factor (GF) contained colony-stimulating activity (CSA) in normal bone marrow (BM) cells. The activity was believed to be attributable mainly to GM-CSF, since 64% of this activity was neutralized by anti-GM-CSF antibodies and a transcript of GM-CSF was detected in mRNA from PMA-treated CMK cells by Northern blot analysis. These observations suggest that GM-CSF, as well as IL-3, should play an important role in megakaryocytopoiesis.


Blood ◽  
1991 ◽  
Vol 78 (9) ◽  
pp. 2261-2268 ◽  
Author(s):  
S Chiba ◽  
F Takaku ◽  
T Tange ◽  
K Shibuya ◽  
C Misawa ◽  
...  

We have established a new nonlymphoid leukemic cell ine from a patient with myelodysplastic syndrome (MDS), which progressed to overt leukemia. The parental cell line and a subline derived from this line have absolute dependency on several cytokines for their long-term survival and growth. The parental line designated F-36P requires granulocyte-macrophage colony-stimulating factor (GM-CSF) or interleukin-3 (IL-3) for continuous growth, while a subline designated F-36E can be maintained in the presence of erythropoietin (Epo) alone. When these cytokines are depleted, both the parental and the subline cells die within several days, even in medium supplemented with fetal calf serum (FCS). F-36E, maintained in the presence of Epo, constitutively synthesizes hemoglobin at a significant level. F-36P, which is usually maintained in the presence of GM-CSF or IL-3, can be induced to synthesize hemoglobin when GM-CSF or IL-3 is substituted by Epo. The surface marker profile shows that the F-36P cells are positive for the leukocyte common antigen (CD45) and some common multilineage markers such as CD13, CD33, and CD34, and negative for T- and B-cell antigens and mature myelomonocytic antigens. However, some monoclonal antibodies recognizing erythroid and platelet glycoproteins react with these cells. Thus, this cell line has a multilineage phenotype, suggesting that the transformation event occurred in a multipotent stem cell. It is also evident that the F-36 cells can be induced to differentiate into the erythroid lineage in the presence of Epo. This, to our knowledge, is the first description of a human leukemic cell line that can be stimulated to synthesize hemoglobin by Epo.


Blood ◽  
1994 ◽  
Vol 84 (1) ◽  
pp. 94-103
Author(s):  
D Linnekin ◽  
OM Howard ◽  
L Park ◽  
W Farrar ◽  
D Ferris ◽  
...  

The human myeloid cell line HL-60 expresses approximately 300 high- affinity granulocyte-macrophage colony-stimulating factor receptors (GM- CSFRs), yet treatment of these cells with GM-CSF does not result in enhanced cellular proliferation or increases in protein tyrosine phosphorylation. In contrast, GM-CSF induces rapid increases in protein tyrosine phosphorylation and proliferative responses in HL-60 cells pretreated for 3 days in dimethyl sulfoxide (DMSO). Similarly, HL-60 cells pretreated with retinoic acid or 1,25 dihydroxyvitamin D3 were also capable of responding to GM-CSF. Interestingly, each of these treatments resulted in increased expression of the src-like tyrosine kinase hck. Stimulation with GM-CSF increased hck autophosphorylation in DMSO-treated HL-60 cells, suggesting that hck is a component of the GM-CSF signal transduction pathway. To determine if hck has a role in the DMSO-induced recoupling of the GM-CSFR, we overexpressed hck in HL- 60 cells. The resulting cell line (HL-60/hck) expresses hck mRNA and protein at levels comparable with DMSO-treated HL-60 cells. Stimulation of HL-60/hck cells with GM-CSF results in activation of hck, increases in protein tyrosine phosphorylation, and increased proliferation. These results show that cytokine receptors can exist in an uncoupled form and suggest that in HL-60 cells, appropriate levels of the src-like tyrosine kinase hck are critical for functional coupling of the GM-CSFR to biologic responses.


Blood ◽  
1994 ◽  
Vol 84 (1) ◽  
pp. 94-103 ◽  
Author(s):  
D Linnekin ◽  
OM Howard ◽  
L Park ◽  
W Farrar ◽  
D Ferris ◽  
...  

Abstract The human myeloid cell line HL-60 expresses approximately 300 high- affinity granulocyte-macrophage colony-stimulating factor receptors (GM- CSFRs), yet treatment of these cells with GM-CSF does not result in enhanced cellular proliferation or increases in protein tyrosine phosphorylation. In contrast, GM-CSF induces rapid increases in protein tyrosine phosphorylation and proliferative responses in HL-60 cells pretreated for 3 days in dimethyl sulfoxide (DMSO). Similarly, HL-60 cells pretreated with retinoic acid or 1,25 dihydroxyvitamin D3 were also capable of responding to GM-CSF. Interestingly, each of these treatments resulted in increased expression of the src-like tyrosine kinase hck. Stimulation with GM-CSF increased hck autophosphorylation in DMSO-treated HL-60 cells, suggesting that hck is a component of the GM-CSF signal transduction pathway. To determine if hck has a role in the DMSO-induced recoupling of the GM-CSFR, we overexpressed hck in HL- 60 cells. The resulting cell line (HL-60/hck) expresses hck mRNA and protein at levels comparable with DMSO-treated HL-60 cells. Stimulation of HL-60/hck cells with GM-CSF results in activation of hck, increases in protein tyrosine phosphorylation, and increased proliferation. These results show that cytokine receptors can exist in an uncoupled form and suggest that in HL-60 cells, appropriate levels of the src-like tyrosine kinase hck are critical for functional coupling of the GM-CSFR to biologic responses.


Blood ◽  
1991 ◽  
Vol 77 (2) ◽  
pp. 243-248 ◽  
Author(s):  
Y Kanakura ◽  
B Druker ◽  
KW Wood ◽  
HJ Mamon ◽  
K Okuda ◽  
...  

Abstract The product of the c-raf-1 proto-oncogene, Raf-1, is a 74,000-dalton cytoplasmic serine/threonine protein kinase that has been implicated as an intermediate in signal transduction mechanisms. In the human factor- dependent myeloid cell line MO7, both granulocyte-macrophage colony stimulating factor (GM-CSF) and interleukin-3 (IL-3) were found to induce rapid, dose-dependent phosphorylation of Raf-1, which resulted in altered Raf-1 mobility in sodium dodecyl sulfate-polyacrylamide gels. The increase in phosphorylation was due primarily to an increase in phosphoserine, with only a minor component (less than 2%) of phosphotyrosine. PMA (12-phorbol 13-myristic acid) also induced Raf-1 phosphorylation in MO7 cells, but the resulting alteration in electrophoretic mobility was different than that observed after GM-CSF or IL-3. GM-CSF and IL-3 rapidly and transiently increased Raf-1 kinase activity using Histone H1 as a substrate in an immune complex kinase assay in vitro. These results suggest that phosphorylation of Raf-1 could play a role in some aspect of GM-CSF and IL-3 signal transduction.


Blood ◽  
1991 ◽  
Vol 78 (5) ◽  
pp. 1301-1310
Author(s):  
KB Leslie ◽  
HJ Ziltener ◽  
JW Schrader

WEHI-274.3 is a cell line isolated from an in vivo-derived, murine myelomonocytic leukemia. Although the survival and growth of WEHI-274.3 cells in vitro is absolutely dependent on the addition of exogenous growth factors such as interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF), or colony-stimulating factor-1, when injected into syngeneic mice the cell line is tumorigenic. Sera from normal mice contain low levels of an activity that sustains survival of WEHI-274.3 but does not stimulate growth. In contrast, sera from mice bearing the WEHI-274.3 leukemia contained levels of CSF-1 and GM-CSF that stimulated the growth of WEHI-274.3 cells. Supernatants of cultures of WEHI-274.3 cells contained an activity that stimulated 3T3 fibroblasts to release an activity that stimulated the growth of the WEHI-274.3 cells. The 3T3-stimulatory activity released by the WEHI- 274.3 cells was neutralized completely with an antiserum specific for murine IL-1 alpha, but not with antiserum specific for IL-1 beta. Moreover, WEHI-274.3 cells both in vitro and in vivo contained high levels of IL-1 alpha and IL-1 beta mRNAs. The leukemia-stimulatory activity released by the 3T3 cells was neutralized by an antiserum specific for GM-CSF. We postulate that the IL-1 alpha constitutively released by the WEHI-274.3 cells stimulates the production of GM-CSF from host cells such as fibroblasts or endothelial cells. A similar paracrine mechanism of growth stimulation may occur in acute myeloid leukemias in humans.


Blood ◽  
1989 ◽  
Vol 74 (1) ◽  
pp. 42-48 ◽  
Author(s):  
N Komatsu ◽  
T Suda ◽  
M Moroi ◽  
N Tokuyama ◽  
Y Sakata ◽  
...  

Recently, a human megakaryoblastic cell line, CMK, was established from the peripheral blood of a megakaryoblastic leukemia patient with Down syndrome. Using this cell line, we studied the proliferation and differentiation of megakaryocytic cells in the presence of highly purified human hematopoietic factors and phorbol 12-myristate-13- acetate (PMA). In a methylcellulose culture system, interleukin-3 (IL- 3) and granulocyte-macrophage colony-stimulating factor (GM-CSF) facilitated colony formation by CMK cells in a dose-dependent manner. The maximum stimulating doses of these factors were 10 and 200 U/mL, respectively. These concentrations were comparable to those that stimulate activity in normal hematopoietic cells. In contrast, granulocyte-colony stimulating factor (G-CSF), macrophage-colony stimulating factor (M-CSF), and erythropoietin (EPO) had no effects on the colony formation of CMK cells. In a liquid culture system, 20% of the CMK cells expressed glycoprotein IIb/IIIa (GPIIb/IIIa) antigen without hematopoietic factors, whereas 40% of the cells expressed GPIIb/IIIa with the addition of IL-3 and GM-CSF. EPO also slightly enhanced expression of GPIIb/IIIa. On the other hand, PMA inhibited growth of CMK cells and induced most of them to express the GPIIb/IIIa antigen. Furthermore, PMA induced CMK cells to produce growth activity toward new inocula of CMK cells. This growth factor (GF) contained colony-stimulating activity (CSA) in normal bone marrow (BM) cells. The activity was believed to be attributable mainly to GM-CSF, since 64% of this activity was neutralized by anti-GM-CSF antibodies and a transcript of GM-CSF was detected in mRNA from PMA-treated CMK cells by Northern blot analysis. These observations suggest that GM-CSF, as well as IL-3, should play an important role in megakaryocytopoiesis.


Blood ◽  
1998 ◽  
Vol 91 (12) ◽  
pp. 4543-4553 ◽  
Author(s):  
Takashi Ikeda ◽  
Kazunori Sasaki ◽  
Kazuma Ikeda ◽  
Genji Yamaoka ◽  
Koichi Kawanishi ◽  
...  

Monocytes/macrophages exert a series of important functions in vivo. To facilitate detailed investigation of their functional capacity and the mechanism leading to their differentiation, several cell lines have been established from primary material. We present here a new human monoblastic cell line, designated UG3. UG3 cells are characterized by the following features. (1) UG3 cells harbor the t(9;11)(p22;q23) translocation that results in fusion of the MLL and the AF9 genes and produce the corresponding AF9-MLL and MLL-AF9 fusion transcripts. (2) UG3 cells rely on the presence of exogenous growth factors for viability and proliferation, such as interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF), granulocyte colony-stimulating factor (G-CSF), or macrophage colony-stimulating factor (M-CSF). (3) When cultured in the presence of G-CSF, UG3 cells differentiate along the granulocytic lineage, as evidenced by segmentation of nuclei and positive staining for neutrophilic alkaline phosphatase and peroxidase. (4) When cultured in the presence of GM-CSF or M-CSF, UG3 cells differentiate into mature macrophages while preserving surface expression of CD14 and CD68 and also start to release cytokines into cell-culture supernatants. Under these culture conditions, UG3 cells also take up acetylated LDL. (5) When cultured in the presence of M-CSF and IL-4, UG3 cells differentiate into osteoclast-like multinucleated giant cells capable of bone resorption and display tartrate-resistant acid phosphatase (TRAP) activity. UG3 cells thus provide features to qualify them as a useful model to further investigate the mechanism underlying these processes and also to further elucidate the functional role of mature monocytes/macrophages or osteoclasts.


Sign in / Sign up

Export Citation Format

Share Document