scholarly journals Homogenization of Maxwell’s equations in a layered system beyond the static approximation

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Alexander M. Merzlikin ◽  
Roman S. Puzko

Abstract The propagation of electromagnetic waves through a disordered layered system is considered in the paradigm of the homogenization of Maxwell’s equations. Although the accuracy of the effective dielectric permittivity and/or magnetic permeability is still unclear outside the static approximation, we show that the effective wave vector can be correctly introduced even in high-frequency cases. It is demonstrated that both the real and imaginary parts of the effective wave vector are self-averaging quantities connected by the Kramers–Kronig relations. We provide a unified approach to describe the propagation and localization of electromagnetic waves in terms of the effective wave vector. We show that the effective wave vector plays the same role in describing composite materials in electrodynamics as the effective dielectric permittivity does in statics.

Author(s):  
Evgen Bondarenko

In the paper, using a linear in angular velocity approximation, two basic well-known systems of Maxwell’s equations in a uniformly rotating frame of reference are considered. The first system of equations was first obtained in the work [L. I. Schiff, Proc. Natl. Acad. Sci. USA 25, 391 (1939)] on the base of use of the formalism of the theory of general relativity, and the second one – in the work [W. M. Irvine, Physica 30, 1160 (1964)] on the base of use of the method of orthonormal tetrad in this theory. In the paper, in the approximation of plane waves, these two vectorial systems of Maxwell’s equations are simplified and rewritten in cylindrical coordinates in scalar component form in order to find the lows of propagation of transversal components of electromagnetic waves in a circular resonator of ring laser gyro in the case of its rotation about sensitivity axis. On the base of these two simplified systems of Maxwell’s equations, the well-known wave equation and its analytical solutions for the named transversal components are obtained. As a result of substitution of these solutions into the first and second simplified systems of Maxwell’s equations, it is revealed that they satisfy only the second one.  On this basis, the conclusion is made that the second system of Maxwell’s equations is more suitable for application in the theory of ring laser gyro than the first one.


1927 ◽  
Vol 46 ◽  
pp. 306-313
Author(s):  
J. M. Whittaker

In the theory of radiation recently advanced by Sir J. J. Thomson it is supposed that electromagnetic waves and quanta are both present in a beam of light. The quanta, which are responsible for the photoelectric effects, are closed rings of electric force propagated in the direction normal to the plane of the ring. Professor Whittaker has discussed this conception from the point of view of Maxwell's equations, and has shown that it is consistent with them ; or rather with an extension of them in which a magnetic density μ analogous to the electric density ρ is introduced.


Author(s):  
George B. Arfken ◽  
David F. Griffing ◽  
Donald C. Kelly ◽  
Joseph Priest

2015 ◽  
Vol 15 (2) ◽  
Author(s):  
Annalisa Baldi ◽  
Bruno Franchi

AbstractLet G be a free Carnot group (i.e. a connected simply connected nilpotent stratified free Lie group) of step 2. In this paper, we prove that the variational functional generated by “intrinsic” Maxwell’s equations in G is the Γ-limit of a sequence of classical (i.e. Euclidean) variational functionals associated with strongly anisotropic dielectric permittivity and magnetic permeability in the Euclidean space.


Sign in / Sign up

Export Citation Format

Share Document