XXVI.—On a Polarised Light Quantum

1927 ◽  
Vol 46 ◽  
pp. 306-313
Author(s):  
J. M. Whittaker

In the theory of radiation recently advanced by Sir J. J. Thomson it is supposed that electromagnetic waves and quanta are both present in a beam of light. The quanta, which are responsible for the photoelectric effects, are closed rings of electric force propagated in the direction normal to the plane of the ring. Professor Whittaker has discussed this conception from the point of view of Maxwell's equations, and has shown that it is consistent with them ; or rather with an extension of them in which a magnetic density μ analogous to the electric density ρ is introduced.

1895 ◽  
Vol 20 ◽  
pp. 213-214 ◽  
Author(s):  
Tait

The first obvious difficulty which presents itself, in trying to derive Clerk-Maxwell's equations from those of the elastic-solid theory, appears in the fact that the latter, being linear, do not impose any relations among simultaneous disturbances. Thus, for instance, they indicate no reason for the associated disturbances which, in Maxwell's theory, constitute a ray of polarised light. Hence it appears that we must look on the vectors of electric and magnetic force, if they are to be accounted for on ordinary dynamical principles, as being necessary concomitants, qualities, or characteristics of one and the same vector-disturbance of the ether, and not themselves primarily disturbances. From this point of view the disturbance, in itself, does not correspond to light, and may perhaps not affect any of our senses. And the very form of the elastic equation at once suggests any number of sets of two concomitants of the desired nature, which are found to be related to one another in the way required by Maxwell's equations.


Author(s):  
Evgen Bondarenko

In the paper, using a linear in angular velocity approximation, two basic well-known systems of Maxwell’s equations in a uniformly rotating frame of reference are considered. The first system of equations was first obtained in the work [L. I. Schiff, Proc. Natl. Acad. Sci. USA 25, 391 (1939)] on the base of use of the formalism of the theory of general relativity, and the second one – in the work [W. M. Irvine, Physica 30, 1160 (1964)] on the base of use of the method of orthonormal tetrad in this theory. In the paper, in the approximation of plane waves, these two vectorial systems of Maxwell’s equations are simplified and rewritten in cylindrical coordinates in scalar component form in order to find the lows of propagation of transversal components of electromagnetic waves in a circular resonator of ring laser gyro in the case of its rotation about sensitivity axis. On the base of these two simplified systems of Maxwell’s equations, the well-known wave equation and its analytical solutions for the named transversal components are obtained. As a result of substitution of these solutions into the first and second simplified systems of Maxwell’s equations, it is revealed that they satisfy only the second one.  On this basis, the conclusion is made that the second system of Maxwell’s equations is more suitable for application in the theory of ring laser gyro than the first one.


Author(s):  
George B. Arfken ◽  
David F. Griffing ◽  
Donald C. Kelly ◽  
Joseph Priest

Author(s):  
E. L. Wolf

Maxwell’s equations describe radiated power from the Sun through space and the atmosphere to the Earth. Black-body radiation arises from matter in thermal equilibrium, as is derived in this chapter. The Stefan–Boltzmann power law is derived, and its consequences are discussed. Basics of the atmosphere are discussed, including kinetic energy arising from the condensation of water vapor to liquid water. The temperatures in the atmosphere are discussed in a layered model. The Sun’s light arrives at Earth through vacuum and the Earth’s atmosphere as electromagnetic waves described by Maxwell’s equations. In contemporary electrical engineering jargon, this is “wireless”, that connects cellphones.


The main object of the paper is to discuss the possibility of a body of homogeneous fluid acting as a self-exciting dynamo. The discussion is for the most part confined to the solution of Maxwell’s equations for a sphere of electrically conducting fluid in which there are specified velocities. Solutions are obtained by expanding the velocity and the fields in spherical harmonics to give a set of simultaneous linear differential equations which are solved by numerical methods. Solutions exist when harmonics up to degree four are included. The convergence of the solutions when more harmonics are included is discussed, but convergence has not been proved. The simultaneous solution of Maxwell’s equations and the hydrodynamic equations has not been attempted, but a velocity system has been chosen that seems reasonable from a dynamical point of view. A parameter in the velocity system has been adjusted to satisfy the conservation of angular momentum in a rough way. Orders of magnitude are derived for a number of quantities connected with the dynamo theory of terrestrial magnetism. It is concluded that the dynamo theory does provide a self-consistent account of the origin of the earth’s magnetic field and raises no insuperable difficulties in other directions.


1. Formulation of the problem. - The propagation of electromagnetic waves in a homogeneous isotropic medium showing metallic conductivity has been treated phenomenologically on the basis of classical electrodynamics. If in Maxwell's equations for the electromagnetic field curl E = - 1/ c ∂B/∂ t , curl H = 1/ c (∂D/∂ t + 4πI), div D = 4πρ, div B = 0, we assume that D = εE, B = μH, I = σE, (1) where e is the dielectric constant, u the permeability and q the electrical conductivity, we get curl E = - μ/c ∂H/∂ t , curl H = 1/ c (ε ∂E/∂ t 4πσE), div E = 4πρ/ε. div H =0.


Sign in / Sign up

Export Citation Format

Share Document