effective wave
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 28)

H-INDEX

15
(FIVE YEARS 4)

Author(s):  
D Paroka ◽  
S Asri ◽  
Rosmani ◽  
Hamzah

The weather criterion is one of stability criteria to verify ability of a ships to withstand the combined effects of severe wind and rolling criteria in dead ship condition. An overestimated roll angle is obtained when the weather criterion is applied to ships with breadth and draught ratios larger than 3.50 and ratios between vertical centre of gravity and draught larger than 1.50. This paper discusses the assessment of weather criterion for an Indonesian ro-ro ferry by model experiments. The drift test is performed in four wave steepnesses with wave frequencies near the roll natural frequency. The maximum roll amplitude is used to calculate the effective wave slope coefficient correponding to the wave steepness, with Bertin’s coefficient obtained by the roll decay test. The damping factors correspond to the breadth and draught ratio as well as the bilge keel contribution are determined using the formula of weather criterion with the roll angle obtained by the Japanese formula with a correction factor of 0.70 due to the irregularity of waves. The obtained effective wave slope coefficient and the damping factors due to breadth and draught ratio and the bilge keel are smaller than those used in the weather criterion.


Author(s):  
L F Hu ◽  
Q Z Zhang ◽  
W Y Zhang ◽  
H B Qi

The International Maritime Organization is currently establishing second generation intact stability criteria, the dead ship stability is considered one important criterion, so the development of its direct stability assessment regulation has become a topic undergoing close review. In this paper a peak-over-threshold (POT) method is proposed to evaluate the dead ship stability, which focuses on the statistical extrapolation that exceed the threshold, also the traditional Monte Carlo simulation is carried out to approve the method. On the basis of verification calculation of the sample ship CEHIPAR2792, the capsizing probability of a certain warship is also conducted. Moreover, the influence of initial stability height GM and effective wave slope coefficient Y on the capsizing probability is analysed. The results and the possible reason for the difference are examined. This study is expected to provide technical support for the second-generation stability criteria and establish the capsizing probability of damaged dead ship stability.


2021 ◽  
Author(s):  
Xiaolong Zhu ◽  
Wei Chen ◽  
Mario Podesta ◽  
Feng Wang ◽  
Deyong Liu ◽  
...  

Abstract Large burst activity, identified as toroidal Alfv\'{e}n eigenmode (TAE) avalanche, occurs frequently in neutral-beam heated plasmas in National Spherical Torus Experiment (NSTX). Based on the typical experimental observation of TAE avalanche on NSTX, a self-consistent nonlinear multiple wave-number ($k_{\parallel}\simeq n/R$, where $n$ toroidal mode-number and $R$ major radius) simulation associated with TAE avalanches is performed using the experimental parameters and profiles before the occurrence of TAE avalanche as the M3D-K input. The wave-wave nonlinear coupling among different modes and the resonant interaction between different modes and energetic-ions during TAE avalanches are identified in the nonlinear multiple wave-number simulations. The resonance overlap during the TAE avalanche is clearly observed in the simulation. It is found that the effective wave-wave coupling and a sufficiently strong drive are two important ingredients for the onset of TAE avalanches. TAE avalanche is considered to be a strongly nonlinear process and it is always accompanied by the simultaneous rapid frequency-chirping and large amplitude bursting of multiple modes and significant energetic-ion losses. The experimental phenomenon is observed on NSTX and is qualitatively reproduced by the simulation results in this work. These findings indicate that the onset of avalanche is triggered by nonlinearity of the system, and are also conducive to understanding the underlying mechanism of avalanche transport of energetic particles in the future burning plasmas, such as ITER.


2021 ◽  
Author(s):  
Juan E. Santos ◽  
José M. Carcione ◽  
Gabriela B. Savioli ◽  
Patricia M. Gauzellino ◽  
Jing Ba

Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1743
Author(s):  
James A. Green ◽  
Martha Yaghoubi Jouybari ◽  
Daniel Aranda ◽  
Roberto Improta ◽  
Fabrizio Santoro

We have recently proposed a protocol for Quantum Dynamics (QD) calculations, which is based on a parameterisation of Linear Vibronic Coupling (LVC) Hamiltonians with Time Dependent (TD) Density Functional Theory (TD-DFT), and exploits the latest developments in multiconfigurational TD-Hartree methods for an effective wave packet propagation. In this contribution we explore the potentialities of this approach to compute nonadiabatic vibronic spectra and ultrafast dynamics, by applying it to the five nucleobases present in DNA and RNA. For all of them we computed the absorption spectra and the dynamics of ultrafast internal conversion (100 fs timescale), fully coupling the first 2–3 bright states and all the close by dark states, for a total of 6–9 states, and including all the normal coordinates. We adopted two different functionals, CAM-B3LYP and PBE0, and tested the effect of the basis set. Computed spectra are in good agreement with the available experimental data, remarkably improving over pure electronic computations, but also with respect to vibronic spectra obtained neglecting inter-state couplings. Our QD simulations indicate an effective population transfer from the lowest energy bright excited states to the close-lying dark excited states for uracil, thymine and adenine. Dynamics from higher-energy states show an ultrafast depopulation toward the more stable ones. The proposed protocol is sufficiently general and automatic to promise to become useful for widespread applications.


2021 ◽  
Author(s):  
Ivan Vasconcelos ◽  
Wouter Klessens ◽  
Yang Jiao ◽  
Andre Niemeijer ◽  
Suzanne Hangx

<p>More often than not, important geologic processes occur at micro-scales, e.g., fluid flow, mineral-phase changes, chemically-induced alteration, rock-frame compaction, or even mechanical ruptures/instabilities leading to large earthquakes. However, reliably imaging material properties at such scales from remote long-wavelength information contained in either seismic or EM fields has long been a challenge to the geophysical, engineering and material science communities. In this talk, we present a general framework for the estimation of sub-wavelength material properties from long-scale waves, building on recent advances on statistical microstructure descriptors (SMDs) within the field of material science.</p><p> </p><p>In geoscience, traditional approaches to describing material microheterogeneity rely on either analytical inclusion-based models, or in sample-based digital rocks: each of these having their pros and cons. Here, we instead rely on SMDs, namely two-point correlation and polytope functions, to describe microheterogeneous geo-materials in a manner that is capable of generalizing complex geometrical information hidden in microstructures, while also retaining realism and sample fidelity. Using SMDs, we rely on wave-equation-based Strong Contrast Expansions (SCEs) to predict frequency/scale-dependent effective wave properties for acoustic, elastic and EM waves.  We briefly discuss how SMD-described microstructures affect long-wave properties – and in particular how they not only predict frequency-dependent attenuation due to sub-wavelength scattering, but that attenuation is particularly sensitive to microstructure when compared to effective wavespeeds.</p><p> </p><p>When it comes to the estimation of microstructure properties from wave observations, the problem becomes substantially more difficult because realistic microscale parameters could in principle have far too many degrees of freedom than what is observable from finite-frequency wave data. As such, it is key that any method that aims at realistically retrieving microstructure information from long-scale wave data accounts for uncertainty, while also handling the highly nonlinear nature of microstructure-dependent effective wave properties. To that end, we combine our SMD and SCE approaches for effective wave properties with the supervised machine-learning method of Random Forests to construct a Bayesian approach to infer microstructure properties from effective wave parameters as observables. This method yields full posterior distributions for microstructure parameters (e.g., property contrast, volume fraction, and geometry information) from frequency-dependent observations of wave velocities and attenuation. We present several examples of inference scenarios, showing, for example, that i) attenuation is key to microstructure imaging, and ii) microgeometry information can only be reliably retrieved if contrast and volume fraction are relatively well known a priori. We illustrate of inference approach with several examples of analytical and real microstructures, including data from a  laboratory compaction experiment controlled by microscale CT imaging.</p>


Author(s):  
Arianna Ligorini ◽  
Jacek Niemiec ◽  
Oleh Kobzar ◽  
Masanori Iwamoto ◽  
Artem Bohdan ◽  
...  

Abstract Mildly relativistic shocks in magnetized electron-ion plasmas are investigated with 2D kinetic particle-in-cell simulations of unprecedentedly high resolution and large scale for conditions that may be found at internal shocks in blazar cores. Ion-scale effects cause corrugations along the shock surface whose properties somewhat depend on the configuration of the mean perpendicular magnetic field, that is either in or out of the simulation plane. We show that the synchrotron maser instability persists to operate in mildly relativistic shocks in agreement with theoretical predictions and produces coherent emission of upstream-propagating electromagnetic waves. Shock front ripples are excited in both mean-field configurations and they engender effective wave amplification. The interaction of these waves with upstream plasma generates electrostatic wakefields.


2020 ◽  
Vol 643 ◽  
pp. A168
Author(s):  
P.-L. Poulier ◽  
D. Fournier ◽  
L. Gizon ◽  
T. L. Duvall

Context. The frequencies, lifetimes, and eigenfunctions of solar acoustic waves are affected by turbulent convection, which is random in space and in time. Since the correlation time of solar granulation and the periods of acoustic waves (∼5 min) are similar, the medium in which the waves propagate cannot a priori be assumed to be time independent. Aims. We compare various effective-medium solutions with numerical solutions in order to identify the approximations that can be used in helioseismology. For the sake of simplicity, the medium is one dimensional. Methods. We consider the Keller approximation, the second-order Born approximation, and spatial homogenization to obtain theoretical values for the effective wave speed and attenuation (averaged over the realizations of the medium). Numerically, we computed the first and second statistical moments of the wave field over many thousands of realizations of the medium (finite-amplitude sound-speed perturbations are limited to a 30 Mm band and have a zero mean). Results. The effective wave speed is reduced for both the theories and the simulations. The attenuation of the coherent wave field and the wave speed are best described by the Keller theory. The numerical simulations reveal the presence of coda waves, trailing the ballistic wave packet. These late arrival waves are due to multiple scattering and are easily seen in the second moment of the wave field. Conclusions. We find that the effective wave speed can be calculated, numerically and theoretically, using a single snapshot of the random medium (frozen medium); however, the attenuation is underestimated in the frozen medium compared to the time-dependent medium. Multiple scattering cannot be ignored when modeling acoustic wave propagation through solar granulation.


Sign in / Sign up

Export Citation Format

Share Document