scholarly journals Sectoral activation of glia in an inducible mouse model of autosomal dominant retinitis pigmentosa

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Michael T. Massengill ◽  
Neil F. Ash ◽  
Brianna M. Young ◽  
Cristhian J. Ildefonso ◽  
Alfred S. Lewin

Abstract Retinitis pigmentosa (RP) is a group of blinding disorders caused by diverse mutations, including in rhodopsin (RHO). Effective therapies have yet to be discovered. The I307N Rho mouse is a light-inducible model of autosomal dominant RP. Our purpose was to describe the glial response in this mouse model to educate future experimentation. I307N Rho mice were exposed to 20,000 lx of light for thirty minutes to induce retinal degeneration. Immunofluorescence staining of cross-sections and flat-mounts was performed to visualize the response of microglia and Müller glia. Histology was correlated with spectral-domain optical coherence tomography imaging (SD-OCT). Microglia dendrites extended between photoreceptors within two hours of induction, withdrew their dendrites between twelve hours and one day, appeared ameboid by three days, and assumed a ramified morphology by one month. Glial activation was more robust in the inferior retina and modulated across the boundary of light damage. SD-OCT hyper-reflectivity overlapped with activated microglia. Finally, microglia transiently adhered to the RPE before which RPE cells appeared dysmorphic. Our data demonstrate the spatial and temporal pattern of glial activation in the I307N Rho mouse, and correlate these patterns with SD-OCT images, assisting in interpretation of SD-OCT images in preclinical models and in human RP.

2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Jin Kyun Oh ◽  
Jose Ronaldo Lima de Carvalho ◽  
Young Joo Sun ◽  
Sara Ragi ◽  
Jing Yang ◽  
...  

Abstract Background Mutations in the Kelch-like protein 7 (KLHL7) represent a recently described and, to date, poorly characterized etiology of inherited retinal dystrophy. Dominant mutations in KLHL7 are a cause of isolated, non-syndromic retinitis pigmentosa (RP). In contrast, recessive loss-of-function mutations are known to cause Crisponi or Bohring-Opitz like cold induced sweating syndrome-3 (BOS-3). In this study, the phenotype and progression of five unrelated patients with KLHL7 mediated autosomal dominant RP (adRP) are characterized. Clinical evaluation of these patients involved a complete ophthalmic exam, full-field electroretinography (ffERG), and imaging, including fundus photography, spectral domain optical coherence tomography (SD-OCT), short wavelength fundus autofluorescence (SW-AF), and near-infrared fundus autofluorescence (NIR-AF). Molecular diagnoses were performed using whole-exome sequencing or gene panel testing. Disease progression was monitored in three patients with available data for a mean follow up time of 4.5 ± 2.9 years. Protein modeling was performed for all variants found in this study in addition to those documented in the literature for recessive loss-of-function alleles causing Crisponi or Bohring-Opitz like cold-induced sweating syndrome. Results Genetic testing in three patients identified two novel variants within the 3-box motif of the BACK domain: c.472 T > C:p.(Cys158Arg) and c.433A > T:p.(Asn145Tyr). Clinical imaging demonstrated hyperautofluorescent ring formation on both SW-AF and NIR-AF in three patients, with diffuse peripheral and peripapillary atrophy seen in all but one case. SD-OCT demonstrated a phenotypic spectrum, from parafoveal atrophy of the outer retina with foveal sparing to widespread retinal thinning and loss of photoreceptors. Incidence of cystoid macular edema was high with four of five patients affected. Protein modeling of dominant alleles versus recessive loss-of-function alleles showed dominant alleles localized to the BTB and BACK domains while recessive alleles were found in the Kelch domain. Conclusions We report the phenotype in five patients with KLHL7 mediated adRP, two novel coding variants, and imaging biomarkers using SW-AF and NIR-AF. These findings may influence future gene-based therapies for adRP and pave the way for mechanistic studies that elucidate the pathogenesis of KLHL7-mediated RP.


PLoS ONE ◽  
2016 ◽  
Vol 11 (5) ◽  
pp. e0154779 ◽  
Author(s):  
Yogesh Bhootada ◽  
Pravallika Kotla ◽  
Sergei Zolotukhin ◽  
Oleg Gorbatyuk ◽  
Zsuzsanna Bebok ◽  
...  

2011 ◽  
Vol 22 (5) ◽  
pp. 567-575 ◽  
Author(s):  
Haoyu Mao ◽  
Thomas James ◽  
Alison Schwein ◽  
Arseniy E. Shabashvili ◽  
William W. Hauswirth ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document